国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

directory search
前言 何為PostgreSQL? PostgreSQL簡史 格式約定 更多信息 臭蟲匯報指導 I. 教程 章1. 從頭開始 1.1. 安裝 1.2. 體系基本概念 1.3. 創(chuàng)建一個數(shù)據(jù)庫 1.4. 訪問數(shù)據(jù)庫 章2. SQL語言 2.1. 介紹 2.2. 概念 2.3. 創(chuàng)建新表 2.4. 向表中添加行 2.5. 查詢一個表 2.6. 表間鏈接 2.7. 聚集函數(shù) 2.8. 更新 2.9. 刪除 章3. 高級特性 3.1. 介紹 3.2. 視圖 3.3. 外鍵 3.4. 事務(wù) 3.5. 窗口函數(shù) 3.6. 繼承 3.7. 結(jié)論 II. SQL語言 章4. SQL語法 4.1. 詞法結(jié)構(gòu) 4.2. 值表達式 4.3. 調(diào)用函數(shù) 章5. 數(shù)據(jù)定義 5.1. 表的基本概念 5.2. 缺省值 5.3. 約束 5.4. 系統(tǒng)字段 5.5. 修改表 5.6. 權(quán)限 5.7. 模式 5.8. 繼承 5.9. 分區(qū) 5.10. 其它數(shù)據(jù)庫對象 5.11. 依賴性跟蹤 章 6. 數(shù)據(jù)操作 6.1. 插入數(shù)據(jù) 6.2. 更新數(shù)據(jù) 6.3. 刪除數(shù)據(jù) 章7. 查詢 7.1. 概述 7.2. 表表達式 7.3. 選擇列表 7.4. 組合查詢 7.5. 行排序 7.6. LIMIT和OFFSET 7.7. VALUES列表 7.8. WITH的查詢(公用表表達式) 章8. 數(shù)據(jù)類型 8.1. 數(shù)值類型 8.2. 貨幣類型 8.3. 字符類型 8.4. 二進制數(shù)據(jù)類型 8.5. 日期/時間類型 8.6. 布爾類型 8.7. 枚舉類型 8.8. 幾何類型 8.9. 網(wǎng)絡(luò)地址類型 8.10. 位串類型 8.11. 文本搜索類型 8.12. UUID類型 8.13. XML類型 8.14. 數(shù)組 8.15. 復合類型 8.16. 對象標識符類型 8.17. 偽類型 章 9. 函數(shù)和操作符 9.1. 邏輯操作符 9.2. 比較操作符 9.3. 數(shù)學函數(shù)和操作符 9.4. 字符串函數(shù)和操作符 9.5. 二進制字符串函數(shù)和操作符 9.6. 位串函數(shù)和操作符 9.7. 模式匹配 9.8. 數(shù)據(jù)類型格式化函數(shù) 9.9. 時間/日期函數(shù)和操作符 9.10. 支持枚舉函數(shù) 9.11. 幾何函數(shù)和操作符 9.12. 網(wǎng)絡(luò)地址函數(shù)和操作符 9.13. 文本檢索函數(shù)和操作符 9.14. XML函數(shù) 9.15. 序列操作函數(shù) 9.16. 條件表達式 9.17. 數(shù)組函數(shù)和操作符 9.18. 聚合函數(shù) 9.19. 窗口函數(shù) 9.20. 子查詢表達式 9.21. 行和數(shù)組比較 9.22. 返回集合的函數(shù) 9.23. 系統(tǒng)信息函數(shù) 9.24. 系統(tǒng)管理函數(shù) 9.25. 觸發(fā)器函數(shù) 章10. 類型轉(zhuǎn)換 10.3. 函數(shù) 10.2. 操作符 10.1. 概述 10.4. 值存儲 10.5. UNION 章11. 索引 11.1. 介紹 11.2. 索引類型 11.3. 多字段索引 11.4. 索引和ORDER BY 11.5. 組合多個索引 11.6. 唯一索引 11.7. 表達式上的索引 11.8. 部分索引 11.9. 操作類和操作簇 11.10. 檢查索引的使用 章12. Full Text Search 12.1. Introduction 12.2. Tables and Indexes 12.3. Controlling Text Search 12.4. Additional Features 12.5. Parsers 12.6. Dictionaries 12.7. Configuration Example 12.8. Testing and Debugging Text Search 12.9. GiST and GIN Index Types 12.10. psql Support 12.11. Limitations 12.12. Migration from Pre-8.3 Text Search 章13. 并發(fā)控制 13.1. 介紹 13.2. 事務(wù)隔離 13.3. 明確鎖定 13.4. 應用層數(shù)據(jù)完整性檢查 13.5. 鎖和索引 章14. 性能提升技巧 14.1. 使用EXPLAIN 14.2. 規(guī)劃器使用的統(tǒng)計信息 14.3. 用明確的JOIN語句控制規(guī)劃器 14.4. 向數(shù)據(jù)庫中添加記錄 14.5. 非持久性設(shè)置 III. 服務(wù)器管理 章15. 安裝指導 15.1. 簡版 15.2. 要求 15.3. 獲取源碼 15.4. 升級 15.5. 安裝過程 15.6. 安裝后的設(shè)置 15.7. 支持的平臺 15.8. 特殊平臺的要求 章16. Installation from Source Code on Windows 16.1. Building with Visual C++ or the Platform SDK 16.2. Building libpq with Visual C++ or Borland C++ 章17. 服務(wù)器安裝和操作 17.1. PostgreSQL用戶帳戶 17.2. 創(chuàng)建數(shù)據(jù)庫集群 17.3. 啟動數(shù)據(jù)庫服務(wù)器 17.4. 管理內(nèi)核資源 17.5. 關(guān)閉服務(wù) 17.6. 防止服務(wù)器欺騙 17.7. 加密選項 17.8. 用SSL進行安全的TCP/IP連接 17.9. Secure TCP/IP Connections with SSH Tunnels 章18. 服務(wù)器配置 18.1. 設(shè)置參數(shù) 18.2. 文件位置 18.3. 連接和認證 18.4. 資源消耗 18.5. 預寫式日志 18.6. 查詢規(guī)劃 18.7. 錯誤報告和日志 18.8. 運行時統(tǒng)計 18.9. 自動清理 18.10. 客戶端連接缺省 18.12. 版本和平臺兼容性 18.11. 鎖管理 18.13. 預置選項 18.14. 自定義的選項 18.15. 開發(fā)人員選項 18.16. 短選項 章19. 用戶認證 19.1. pg_hba.conf 文件 19.2. 用戶名映射 19.3. 認證方法 19.4. 用戶認證 章20. 數(shù)據(jù)庫角色和權(quán)限 20.1. 數(shù)據(jù)庫角色 20.2. 角色屬性 20.3. 權(quán)限 20.4. 角色成員 20.5. 函數(shù)和觸發(fā)器 章21. 管理數(shù)據(jù)庫 21.1. 概述 21.2. 創(chuàng)建一個數(shù)據(jù)庫 21.3. 臨時庫 21.4. 數(shù)據(jù)庫配置 21.5. 刪除數(shù)據(jù)庫 21.6. 表空間 章22. 本土化 22.1. 區(qū)域支持 22.2. 字符集支持 章23. 日常數(shù)據(jù)庫維護工作 23.1. Routine Vacuuming日常清理 23.2. 經(jīng)常重建索引 23.3. 日志文件維護 章24. 備份和恢復 24.1. SQL轉(zhuǎn)儲 24.2. 文件系統(tǒng)級別的備份 24.3. 在線備份以及即時恢復(PITR) 24.4. 版本間遷移 章25. 高可用性與負載均衡,復制 25.1. 不同解決方案的比較 25.2. 日志傳送備份服務(wù)器 25.3. 失效切換 25.4. 日志傳送的替代方法 25.5. 熱備 章26. 恢復配置 26.1. 歸檔恢復設(shè)置 26.2. 恢復目標設(shè)置 26.3. 備服務(wù)器設(shè)置 章27. 監(jiān)控數(shù)據(jù)庫的活動 27.1. 標準Unix工具 27.2. 統(tǒng)計收集器 27.3. 查看鎖 27.4. 動態(tài)跟蹤 章28. 監(jiān)控磁盤使用情況 28.1. 判斷磁盤的使用量 28.2. 磁盤滿導致的失效 章29. 可靠性和預寫式日志 29.1. 可靠性 29.2. 預寫式日志(WAL) 29.3. 異步提交 29.4. WAL配置 29.5. WAL內(nèi)部 章30. Regression Tests 30.1. Running the Tests 30.2. Test Evaluation 30.3. Variant Comparison Files 30.4. Test Coverage Examination IV. 客戶端接口 章31. libpq-C庫 31.1. 數(shù)據(jù)庫聯(lián)接函數(shù) 31.2. 連接狀態(tài)函數(shù) 31.3. 命令執(zhí)行函數(shù) 31.4. 異步命令處理 31.5. 取消正在處理的查詢 31.6. 捷徑接口 31.7. 異步通知 31.8. 與COPY命令相關(guān)的函數(shù) 31.9. Control Functions 控制函數(shù) 31.10. 其他函數(shù) 31.11. 注意信息處理 31.12. 事件系統(tǒng) 31.13. 環(huán)境變量 31.14. 口令文件 31.15. 連接服務(wù)的文件 31.16. LDAP查找連接參數(shù) 31.17. SSL支持 31.18. 在多線程程序里的行為 31.19. 制作libpq程序 31.20. 例子程序 章32. 大對象 32.1. 介紹 32.2. 實現(xiàn)特點 32.3. 客戶端接口 32.4. 服務(wù)器端函數(shù) 32.5. 例子程序 章33. ECPG - Embedded SQL in C 33.1. The Concept 33.2. Connecting to the Database Server 33.3. Closing a Connection 33.4. Running SQL Commands 33.5. Choosing a Connection 33.6. Using Host Variables 33.7. Dynamic SQL 33.8. pgtypes library 33.9. Using Descriptor Areas 33.10. Informix compatibility mode 33.11. Error Handling 33.12. Preprocessor directives 33.13. Processing Embedded SQL Programs 33.14. Library Functions 33.15. Internals 章34. 信息模式 34.1. 關(guān)于這個模式 34.2. 數(shù)據(jù)類型 34.3. information_schema_catalog_name 34.4. administrable_role_authorizations 34.5. applicable_roles 34.6. attributes 34.7. check_constraint_routine_usage 34.8. check_constraints 34.9. column_domain_usage 34.10. column_privileges 34.11. column_udt_usage 34.12. 字段 34.13. constraint_column_usage 34.14. constraint_table_usage 34.15. data_type_privileges 34.16. domain_constraints 34.18. domains 34.17. domain_udt_usage 34.19. element_types 34.20. enabled_roles 34.21. foreign_data_wrapper_options 34.22. foreign_data_wrappers 34.23. foreign_server_options 34.24. foreign_servers 34.25. key_column_usage 34.26. parameters 34.27. referential_constraints 34.28. role_column_grants 34.29. role_routine_grants 34.30. role_table_grants 34.31. role_usage_grants 34.32. routine_privileges 34.33. routines 34.34. schemata 34.35. sequences 34.36. sql_features 34.37. sql_implementation_info 34.38. sql_languages 34.39. sql_packages 34.40. sql_parts 34.41. sql_sizing 34.42. sql_sizing_profiles 34.43. table_constraints 34.44. table_privileges 34.45. tables 34.46. triggered_update_columns 34.47. 觸發(fā)器 34.48. usage_privileges 34.49. user_mapping_options 34.50. user_mappings 34.51. view_column_usage 34.52. view_routine_usage 34.53. view_table_usage 34.54. 視圖 V. 服務(wù)器端編程 章35. 擴展SQL 35.1. 擴展性是如何實現(xiàn)的 35.2. PostgreSQL類型系統(tǒng) 35.3. User-Defined Functions 35.4. Query Language (SQL) Functions 35.5. Function Overloading 35.6. Function Volatility Categories 35.7. Procedural Language Functions 35.8. Internal Functions 35.9. C-Language Functions 35.10. User-Defined Aggregates 35.11. User-Defined Types 35.12. User-Defined Operators 35.13. Operator Optimization Information 35.14. Interfacing Extensions To Indexes 35.15. 用C++擴展 章36. 觸發(fā)器 36.1. 觸發(fā)器行為概述 36.3. 用 C 寫觸發(fā)器 36.2. 數(shù)據(jù)改變的可視性 36.4. 一個完整的例子 章37. 規(guī)則系統(tǒng) 37.1. The Query Tree 37.2. 視圖和規(guī)則系統(tǒng) 37.3. 在INSERT,UPDATE和DELETE上的規(guī)則 37.4. 規(guī)則和權(quán)限 37.5. 規(guī)則和命令狀態(tài) 37.6. 規(guī)則與觸發(fā)器得比較 章38. Procedural Languages 38.1. Installing Procedural Languages 章39. PL/pgSQL - SQL過程語言 39.1. 概述 39.2. PL/pgSQL的結(jié)構(gòu) 39.3. 聲明 39.4. 表達式 39.5. 基本語句 39.6. 控制結(jié)構(gòu) 39.7. 游標 39.8. 錯誤和消息 39.9. 觸發(fā)器過程 39.10. PL/pgSQL Under the Hood 39.11. 開發(fā)PL/pgSQL的一些提示 39.12. 從OraclePL/SQL 進行移植 章40. PL/Tcl - Tcl Procedural Language 40.1. Overview 40.2. PL/Tcl Functions and Arguments 40.3. Data Values in PL/Tcl 40.4. Global Data in PL/Tcl 40.5. Database Access from PL/Tcl 40.6. Trigger Procedures in PL/Tcl 40.7. Modules and the unknown command 40.8. Tcl Procedure Names 章41. PL/Perl - Perl Procedural Language 41.1. PL/Perl Functions and Arguments 41.2. Data Values in PL/Perl 41.3. Built-in Functions 41.4. Global Values in PL/Perl 41.6. PL/Perl Triggers 41.5. Trusted and Untrusted PL/Perl 41.7. PL/Perl Under the Hood 章42. PL/Python - Python Procedural Language 42.1. Python 2 vs. Python 3 42.2. PL/Python Functions 42.3. Data Values 42.4. Sharing Data 42.5. Anonymous Code Blocks 42.6. Trigger Functions 42.7. Database Access 42.8. Utility Functions 42.9. Environment Variables 章43. Server Programming Interface 43.1. Interface Functions Spi-spi-connect Spi-spi-finish Spi-spi-push Spi-spi-pop Spi-spi-execute Spi-spi-exec Spi-spi-execute-with-args Spi-spi-prepare Spi-spi-prepare-cursor Spi-spi-prepare-params Spi-spi-getargcount Spi-spi-getargtypeid Spi-spi-is-cursor-plan Spi-spi-execute-plan Spi-spi-execute-plan-with-paramlist Spi-spi-execp Spi-spi-cursor-open Spi-spi-cursor-open-with-args Spi-spi-cursor-open-with-paramlist Spi-spi-cursor-find Spi-spi-cursor-fetch Spi-spi-cursor-move Spi-spi-scroll-cursor-fetch Spi-spi-scroll-cursor-move Spi-spi-cursor-close Spi-spi-saveplan 43.2. Interface Support Functions Spi-spi-fname Spi-spi-fnumber Spi-spi-getvalue Spi-spi-getbinval Spi-spi-gettype Spi-spi-gettypeid Spi-spi-getrelname Spi-spi-getnspname 43.3. Memory Management Spi-spi-palloc Spi-realloc Spi-spi-pfree Spi-spi-copytuple Spi-spi-returntuple Spi-spi-modifytuple Spi-spi-freetuple Spi-spi-freetupletable Spi-spi-freeplan 43.4. Visibility of Data Changes 43.5. Examples VI. 參考手冊 I. SQL命令 Sql-abort Sql-alteraggregate Sql-alterconversion Sql-alterdatabase Sql-alterdefaultprivileges Sql-alterdomain Sql-alterforeigndatawrapper Sql-alterfunction Sql-altergroup Sql-alterindex Sql-alterlanguage Sql-alterlargeobject Sql-alteroperator Sql-alteropclass Sql-alteropfamily Sql-alterrole Sql-alterschema Sql-altersequence Sql-alterserver Sql-altertable Sql-altertablespace Sql-altertsconfig Sql-altertsdictionary Sql-altertsparser Sql-altertstemplate Sql-altertrigger Sql-altertype Sql-alteruser Sql-alterusermapping Sql-alterview Sql-analyze Sql-begin Sql-checkpoint Sql-close Sql-cluster Sql-comment Sql-commit Sql-commit-prepared Sql-copy Sql-createaggregate Sql-createcast Sql-createconstraint Sql-createconversion Sql-createdatabase Sql-createdomain Sql-createforeigndatawrapper Sql-createfunction Sql-creategroup Sql-createindex Sql-createlanguage Sql-createoperator Sql-createopclass Sql-createopfamily Sql-createrole Sql-createrule Sql-createschema Sql-createsequence Sql-createserver Sql-createtable Sql-createtableas Sql-createtablespace Sql-createtsconfig Sql-createtsdictionary Sql-createtsparser Sql-createtstemplate Sql-createtrigger Sql-createtype Sql-createuser Sql-createusermapping Sql-createview Sql-deallocate Sql-declare Sql-delete Sql-discard Sql-do Sql-dropaggregate Sql-dropcast Sql-dropconversion Sql-dropdatabase Sql-dropdomain Sql-dropforeigndatawrapper Sql-dropfunction Sql-dropgroup Sql-dropindex Sql-droplanguage Sql-dropoperator Sql-dropopclass Sql-dropopfamily Sql-drop-owned Sql-droprole Sql-droprule Sql-dropschema Sql-dropsequence Sql-dropserver Sql-droptable Sql-droptablespace Sql-droptsconfig Sql-droptsdictionary Sql-droptsparser Sql-droptstemplate Sql-droptrigger Sql-droptype Sql-dropuser Sql-dropusermapping Sql-dropview Sql-end Sql-execute Sql-explain Sql-fetch Sql-grant Sql-insert Sql-listen Sql-load Sql-lock Sql-move Sql-notify Sql-prepare Sql-prepare-transaction Sql-reassign-owned Sql-reindex Sql-release-savepoint Sql-reset Sql-revoke Sql-rollback Sql-rollback-prepared Sql-rollback-to Sql-savepoint Sql-select Sql-selectinto Sql-set Sql-set-constraints Sql-set-role Sql-set-session-authorization Sql-set-transaction Sql-show Sql-start-transaction Sql-truncate Sql-unlisten Sql-update Sql-vacuum Sql-values II. 客戶端應用程序 App-clusterdb App-createdb App-createlang App-createuser App-dropdb App-droplang App-dropuser App-ecpg App-pgconfig App-pgdump App-pg-dumpall App-pgrestore App-psql App-reindexdb App-vacuumdb III. PostgreSQL服務(wù)器應用程序 App-initdb App-pgcontroldata App-pg-ctl App-pgresetxlog App-postgres App-postmaster VII. 內(nèi)部 章44. PostgreSQL內(nèi)部概覽 44.1. 查詢路徑 44.2. 連接是如何建立起來的 44.3. 分析器階段 44.4. ThePostgreSQL規(guī)則系統(tǒng) 44.5. 規(guī)劃器/優(yōu)化器 44.6. 執(zhí)行器 章45. 系統(tǒng)表 45.1. 概述 45.2. pg_aggregate 45.3. pg_am 45.4. pg_amop 45.5. pg_amproc 45.6. pg_attrdef 45.7. pg_attribute 45.8. pg_authid 45.9. pg_auth_members 45.10. pg_cast 45.11. pg_class 45.12. pg_constraint 45.13. pg_conversion 45.14. pg_database 45.15. pg_db_role_setting 45.16. pg_default_acl 45.17. pg_depend 45.18. pg_description 45.19. pg_enum 45.20. pg_foreign_data_wrapper 45.21. pg_foreign_server 45.22. pg_index 45.23. pg_inherits 45.24. pg_language 45.25. pg_largeobject 45.26. pg_largeobject_metadata 45.27. pg_namespace 45.28. pg_opclass 45.29. pg_operator 45.30. pg_opfamily 45.31. pg_pltemplate 45.32. pg_proc 45.33. pg_rewrite 45.34. pg_shdepend 45.35. pg_shdescription 45.36. pg_statistic 45.37. pg_tablespace 45.38. pg_trigger 45.39. pg_ts_config 45.40. pg_ts_config_map 45.41. pg_ts_dict 45.42. pg_ts_parser 45.43. pg_ts_template 45.44. pg_type 45.45. pg_user_mapping 45.46. System Views 45.47. pg_cursors 45.48. pg_group 45.49. pg_indexes 45.50. pg_locks 45.51. pg_prepared_statements 45.52. pg_prepared_xacts 45.53. pg_roles 45.54. pg_rules 45.55. pg_settings 45.56. pg_shadow 45.57. pg_stats 45.58. pg_tables 45.59. pg_timezone_abbrevs 45.60. pg_timezone_names 45.61. pg_user 45.62. pg_user_mappings 45.63. pg_views 章46. Frontend/Backend Protocol 46.1. Overview 46.2. Message Flow 46.3. Streaming Replication Protocol 46.4. Message Data Types 46.5. Message Formats 46.6. Error and Notice Message Fields 46.7. Summary of Changes since Protocol 2.0 47. PostgreSQL Coding Conventions 47.1. Formatting 47.2. Reporting Errors Within the Server 47.3. Error Message Style Guide 章48. Native Language Support 48.1. For the Translator 48.2. For the Programmer 章49. Writing A Procedural Language Handler 章50. Genetic Query Optimizer 50.1. Query Handling as a Complex Optimization Problem 50.2. Genetic Algorithms 50.3. Genetic Query Optimization (GEQO) in PostgreSQL 50.4. Further Reading 章51. 索引訪問方法接口定義 51.1. 索引的系統(tǒng)表記錄 51.2. 索引訪問方法函數(shù) 51.3. 索引掃描 51.4. 索引鎖的考量 51.5. 索引唯一性檢查 51.6. 索引開銷估計函數(shù) 章52. GiST Indexes 52.1. Introduction 52.2. Extensibility 52.3. Implementation 52.4. Examples 52.5. Crash Recovery 章53. GIN Indexes 53.1. Introduction 53.2. Extensibility 53.3. Implementation 53.4. GIN tips and tricks 53.5. Limitations 53.6. Examples 章54. 數(shù)據(jù)庫物理存儲 54.1. 數(shù)據(jù)庫文件布局 54.2. TOAST 54.3. 自由空間映射 54.4. 可見映射 54.5. 數(shù)據(jù)庫分頁文件 章55. BKI后端接口 55.1. BKI 文件格式 55.2. BKI命令 55.3. 系統(tǒng)初始化的BKI文件的結(jié)構(gòu) 55.4. 例子 章56. 規(guī)劃器如何使用統(tǒng)計信息 56.1. 行預期的例子 VIII. 附錄 A. PostgreSQL錯誤代碼 B. 日期/時間支持 B.1. 日期/時間輸入解析 B.2. 日期/時間關(guān)鍵字 B.3. 日期/時間配置文件 B.4. 日期單位的歷史 C. SQL關(guān)鍵字 D. SQL Conformance D.1. Supported Features D.2. Unsupported Features E. Release Notes Release-0-01 Release-0-02 Release-0-03 Release-1-0 Release-1-01 Release-1-02 Release-1-09 Release-6-0 Release-6-1 Release-6-1-1 Release-6-2 Release-6-2-1 Release-6-3 Release-6-3-1 Release-6-3-2 Release-6-4 Release-6-4-1 Release-6-4-2 Release-6-5 Release-6-5-1 Release-6-5-2 Release-6-5-3 Release-7-0 Release-7-0-1 Release-7-0-2 Release-7-0-3 Release-7-1 Release-7-1-1 Release-7-1-2 Release-7-1-3 Release-7-2 Release-7-2-1 Release-7-2-2 Release-7-2-3 Release-7-2-4 Release-7-2-5 Release-7-2-6 Release-7-2-7 Release-7-2-8 Release-7-3 Release-7-3-1 Release-7-3-10 Release-7-3-11 Release-7-3-12 Release-7-3-13 Release-7-3-14 Release-7-3-15 Release-7-3-16 Release-7-3-17 Release-7-3-18 Release-7-3-19 Release-7-3-2 Release-7-3-20 Release-7-3-21 Release-7-3-3 Release-7-3-4 Release-7-3-5 Release-7-3-6 Release-7-3-7 Release-7-3-8 Release-7-3-9 Release-7-4 Release-7-4-1 Release-7-4-10 Release-7-4-11 Release-7-4-12 Release-7-4-13 Release-7-4-14 Release-7-4-15 Release-7-4-16 Release-7-4-17 Release-7-4-18 Release-7-4-19 Release-7-4-2 Release-7-4-20 Release-7-4-21 Release-7-4-22 Release-7-4-23 Release-7-4-24 Release-7-4-25 Release-7-4-26 Release-7-4-27 Release-7-4-28 Release-7-4-29 Release-7-4-3 Release-7-4-30 Release-7-4-4 Release-7-4-5 Release-7-4-6 Release-7-4-7 Release-7-4-8 Release-7-4-9 Release-8-0 Release-8-0-1 Release-8-0-10 Release-8-0-11 Release-8-0-12 Release-8-0-13 Release-8-0-14 Release-8-0-15 Release-8-0-16 Release-8-0-17 Release-8-0-18 Release-8-0-19 Release-8-0-2 Release-8-0-20 Release-8-0-21 Release-8-0-22 Release-8-0-23 Release-8-0-24 Release-8-0-25 Release-8-0-26 Release-8-0-3 Release-8-0-4 Release-8-0-5 Release-8-0-6 Release-8-0-7 Release-8-0-8 Release-8-0-9 Release-8-1 Release-8-1-1 Release-8-1-10 Release-8-1-11 Release-8-1-12 Release-8-1-13 Release-8-1-14 Release-8-1-15 Release-8-1-16 Release-8-1-17 Release-8-1-18 Release-8-1-19 Release-8-1-2 Release-8-1-20 Release-8-1-21 Release-8-1-22 Release-8-1-23 Release-8-1-3 Release-8-1-4 Release-8-1-5 Release-8-1-6 Release-8-1-7 Release-8-1-8 Release-8-1-9 Release-8-2 Release-8-2-1 Release-8-2-10 Release-8-2-11 Release-8-2-12 Release-8-2-13 Release-8-2-14 Release-8-2-15 Release-8-2-16 Release-8-2-17 Release-8-2-18 Release-8-2-19 Release-8-2-2 Release-8-2-20 Release-8-2-21 Release-8-2-3 Release-8-2-4 Release-8-2-5 Release-8-2-6 Release-8-2-7 Release-8-2-8 Release-8-2-9 Release-8-3 Release-8-3-1 Release-8-3-10 Release-8-3-11 Release-8-3-12 Release-8-3-13 Release-8-3-14 Release-8-3-15 Release-8-3-2 Release-8-3-3 Release-8-3-4 Release-8-3-5 Release-8-3-6 Release-8-3-7 Release-8-3-8 Release-8-3-9 Release-8-4 Release-8-4-1 Release-8-4-2 Release-8-4-3 Release-8-4-4 Release-8-4-5 Release-8-4-6 Release-8-4-7 Release-8-4-8 Release-9-0 Release-9-0-1 Release-9-0-2 Release-9-0-3 Release-9-0-4 F. 額外提供的模塊 F.1. adminpack F.2. auto_explain F.3. btree_gin F.4. btree_gist F.5. chkpass F.6. citext F.7. cube F.8. dblink Contrib-dblink-connect Contrib-dblink-connect-u Contrib-dblink-disconnect Contrib-dblink Contrib-dblink-exec Contrib-dblink-open Contrib-dblink-fetch Contrib-dblink-close Contrib-dblink-get-connections Contrib-dblink-error-message Contrib-dblink-send-query Contrib-dblink-is-busy Contrib-dblink-get-notify Contrib-dblink-get-result Contrib-dblink-cancel-query Contrib-dblink-get-pkey Contrib-dblink-build-sql-insert Contrib-dblink-build-sql-delete Contrib-dblink-build-sql-update F.9. dict_int F.10. dict_xsyn F.11. earthdistance F.12. fuzzystrmatch F.13. hstore F.14. intagg F.15. intarray F.16. isn F.17. lo F.18. ltree F.19. oid2name F.20. pageinspect F.21. passwordcheck F.22. pg_archivecleanup F.23. pgbench F.24. pg_buffercache F.25. pgcrypto F.26. pg_freespacemap F.27. pgrowlocks F.28. pg_standby F.29. pg_stat_statements F.30. pgstattuple F.31. pg_trgm F.32. pg_upgrade F.33. seg F.34. spi F.35. sslinfo F.36. tablefunc F.37. test_parser F.38. tsearch2 F.39. unaccent F.40. uuid-ossp F.41. vacuumlo F.42. xml2 G. 外部項目 G.1. 客戶端接口 G.2. 過程語言 G.3. 擴展 H. The Source Code Repository H.1. Getting The Source Via Git I. 文檔 I.1. DocBook I.2. 工具集 I.3. 制作文檔 I.4. 文檔寫作 I.5. 風格指導 J. 首字母縮略詞 參考書目 Bookindex Index
characters

12.4. Additional Features

This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents

Section 12.3.1 showed how raw textual documents can be converted into tsvector values. PostgreSQL also provides functions and operators that can be used to manipulate documents that are already in tsvector form.

tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and positional information of the two vectors given as arguments. Positions and weight labels are retained during the concatenation. Positions appearing in the right-hand vector are offset by the largest position mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing to_tsvector on the concatenation of the two original document strings. (The equivalence is not exact, because any stop-words removed from the end of the left-hand argument will not affect the result, whereas they would have affected the positions of the lexemes in the right-hand argument if textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before applying to_tsvector, is that you can use different configurations to parse different sections of the document. Also, because the setweight function marks all lexemes of the given vector the same way, it is necessary to parse the text and do setweight before concatenating if you want to label different parts of the document with different weights.

setweight(vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the given weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on output.) These labels are retained when vectors are concatenated, allowing words from different parts of a document to be weighted differently by ranking functions.

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of positions then setweight does nothing.

length(vector tsvector) returns integer

Returns the number of lexemes stored in the vector.

strip(vector tsvector) returns tsvector

Returns a vector which lists the same lexemes as the given vector, but which lacks any position or weight information. While the returned vector is much less useful than an unstripped vector for relevance ranking, it will usually be much smaller.

12.4.2. Manipulating Queries

Section 12.3.2 showed how raw textual queries can be converted into tsquery values. PostgreSQL also provides functions and operators that can be used to manipulate queries that are already in tsquery form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

!! tsquery

Returns the negation (NOT) of the given query.

numnode(query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a tsquery. This function is useful to determine if the query is meaningful (returns > 0), or contains only stop words (returns 0). Examples:

SELECT numnode(plainto_tsquery('the any'));
NOTICE:  query contains only stopword(s) or doesn't contain lexeme(s), ignored
 numnode
---------
       0

SELECT numnode('foo & bar'::tsquery);
 numnode
---------
       3

querytree(query tsquery) returns text

Returns the portion of a tsquery that can be used for searching an index. This function is useful for detecting unindexable queries, for example those containing only stop words or only negated terms. For example:

SELECT querytree(to_tsquery('!defined'));
 querytree
-----------

12.4.2.1. Query Rewriting

The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery, and replace each occurrence with a substitute subquery. In essence this operation is a tsquery-specific version of substring replacement. A target and substitute combination can be thought of as a query rewrite rule. A collection of such rewrite rules can be a powerful search aid. For example, you can expand the search using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search to direct the user to some hot topic. There is some overlap in functionality between this feature and thesaurus dictionaries (Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly without reindexing, whereas updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by substitute wherever it appears in query. For example:

SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);
 ts_rewrite
------------
 'b' & 'c'

ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and a SQL select command, which is given as a text string. The select must yield two columns of tsquery type. For each row of the select result, occurrences of the first column value (the target) are replaced by the second column value (the substitute) within the current query value. For example:

CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a', 'c');

SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases');
 ts_rewrite
------------
 'b' & 'c'

Note that when multiple rewrite rules are applied in this way, the order of application can be important; so in practice you will want the source query to ORDER BY some ordering key.

Let's consider a real-life astronomical example. We'll expand query supernovae using table-driven rewriting rules:

CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
           ts_rewrite            
---------------------------------
 'crab' & ( 'supernova' | 'sn' )

We can change the rewriting rules just by updating the table:

UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
                 ts_rewrite                  
---------------------------------------------
 'crab' & ( 'supernova' | 'sn' & !'nebula' )

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible match. To filter out obvious non-candidate rules we can use the containment operators for the tsquery type. In the example below, we select only those rules which might match the original query:

SELECT ts_rewrite('a & b'::tsquery,
                  'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t');
 ts_rewrite
------------
 'b' & 'c'

12.4.3. Triggers for Automatic Updates

When using a separate column to store the tsvector representation of your documents, it is necessary to create a trigger to update the tsvector column when the document content columns change. Two built-in trigger functions are available for this, or you can write your own.

tsvector_update_trigger(tsvector_column_name, config_name, text_column_name [, ... ])
tsvector_update_trigger_column(tsvector_column_name, config_column_name, text_column_name [, ... ])

These trigger functions automatically compute a tsvector column from one or more textual columns, under the control of parameters specified in the CREATE TRIGGER command. An example of their use is:

CREATE TABLE messages (
    title       text,
    body        text,
    tsv         tsvector
);

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE PROCEDURE
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);

INSERT INTO messages VALUES('title here', 'the body text is here');

SELECT * FROM messages;
   title    |         body          |            tsv             
------------+-----------------------+----------------------------
 title here | the body text is here | 'bodi':4 'text':5 'titl':1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title & body');
   title    |         body          
------------+-----------------------
 title here | the body text is here

Having created this trigger, any change in title or body will automatically be reflected into tsv, without the application having to worry about it.

The first trigger argument must be the name of the tsvector column to be updated. The second argument specifies the text search configuration to be used to perform the conversion. For tsvector_update_trigger, the configuration name is simply given as the second trigger argument. It must be schema-qualified as shown above, so that the trigger behavior will not change with changes in search_path. For tsvector_update_trigger_column, the second trigger argument is the name of another table column, which must be of type regconfig. This allows a per-row selection of configuration to be made. The remaining argument(s) are the names of textual columns (of type text, varchar, or char). These will be included in the document in the order given. NULL values will be skipped (but the other columns will still be indexed).

A limitation of these built-in triggers is that they treat all the input columns alike. To process columns differently — for example, to weight title differently from body — it is necessary to write a custom trigger. Here is an example using PL/pgSQL as the trigger language:

CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin
  new.tsv :=
     setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
     setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
  return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
    ON messages FOR EACH ROW EXECUTE PROCEDURE messages_trigger();

Keep in mind that it is important to specify the configuration name explicitly when creating tsvector values inside triggers, so that the column's contents will not be affected by changes to default_text_search_config. Failure to do this is likely to lead to problems such as search results changing after a dump and reload.

12.4.4. Gathering Document Statistics

The function ts_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat(sqlquery text, [ weights text, ]
        OUT word text, OUT ndoc integer,
        OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single tsvector column. ts_stat executes the query and returns statistics about each distinct lexeme (word) contained in the tsvector data. The columns returned are

  • word text — the value of a lexeme

  • ndoc integer — number of documents (tsvectors) the word occurred in

  • nentry integer — total number of occurrences of the word

If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:

SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:

SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

Previous article: Next article: