国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

directory search
前言 何為PostgreSQL? PostgreSQL簡史 格式約定 更多信息 臭蟲匯報指導(dǎo) I. 教程 章1. 從頭開始 1.1. 安裝 1.2. 體系基本概念 1.3. 創(chuàng)建一個數(shù)據(jù)庫 1.4. 訪問數(shù)據(jù)庫 章2. SQL語言 2.1. 介紹 2.2. 概念 2.3. 創(chuàng)建新表 2.4. 向表中添加行 2.5. 查詢一個表 2.6. 表間鏈接 2.7. 聚集函數(shù) 2.8. 更新 2.9. 刪除 章3. 高級特性 3.1. 介紹 3.2. 視圖 3.3. 外鍵 3.4. 事務(wù) 3.5. 窗口函數(shù) 3.6. 繼承 3.7. 結(jié)論 II. SQL語言 章4. SQL語法 4.1. 詞法結(jié)構(gòu) 4.2. 值表達(dá)式 4.3. 調(diào)用函數(shù) 章5. 數(shù)據(jù)定義 5.1. 表的基本概念 5.2. 缺省值 5.3. 約束 5.4. 系統(tǒng)字段 5.5. 修改表 5.6. 權(quán)限 5.7. 模式 5.8. 繼承 5.9. 分區(qū) 5.10. 其它數(shù)據(jù)庫對象 5.11. 依賴性跟蹤 章 6. 數(shù)據(jù)操作 6.1. 插入數(shù)據(jù) 6.2. 更新數(shù)據(jù) 6.3. 刪除數(shù)據(jù) 章7. 查詢 7.1. 概述 7.2. 表表達(dá)式 7.3. 選擇列表 7.4. 組合查詢 7.5. 行排序 7.6. LIMIT和OFFSET 7.7. VALUES列表 7.8. WITH的查詢(公用表表達(dá)式) 章8. 數(shù)據(jù)類型 8.1. 數(shù)值類型 8.2. 貨幣類型 8.3. 字符類型 8.4. 二進(jìn)制數(shù)據(jù)類型 8.5. 日期/時間類型 8.6. 布爾類型 8.7. 枚舉類型 8.8. 幾何類型 8.9. 網(wǎng)絡(luò)地址類型 8.10. 位串類型 8.11. 文本搜索類型 8.12. UUID類型 8.13. XML類型 8.14. 數(shù)組 8.15. 復(fù)合類型 8.16. 對象標(biāo)識符類型 8.17. 偽類型 章 9. 函數(shù)和操作符 9.1. 邏輯操作符 9.2. 比較操作符 9.3. 數(shù)學(xué)函數(shù)和操作符 9.4. 字符串函數(shù)和操作符 9.5. 二進(jìn)制字符串函數(shù)和操作符 9.6. 位串函數(shù)和操作符 9.7. 模式匹配 9.8. 數(shù)據(jù)類型格式化函數(shù) 9.9. 時間/日期函數(shù)和操作符 9.10. 支持枚舉函數(shù) 9.11. 幾何函數(shù)和操作符 9.12. 網(wǎng)絡(luò)地址函數(shù)和操作符 9.13. 文本檢索函數(shù)和操作符 9.14. XML函數(shù) 9.15. 序列操作函數(shù) 9.16. 條件表達(dá)式 9.17. 數(shù)組函數(shù)和操作符 9.18. 聚合函數(shù) 9.19. 窗口函數(shù) 9.20. 子查詢表達(dá)式 9.21. 行和數(shù)組比較 9.22. 返回集合的函數(shù) 9.23. 系統(tǒng)信息函數(shù) 9.24. 系統(tǒng)管理函數(shù) 9.25. 觸發(fā)器函數(shù) 章10. 類型轉(zhuǎn)換 10.3. 函數(shù) 10.2. 操作符 10.1. 概述 10.4. 值存儲 10.5. UNION 章11. 索引 11.1. 介紹 11.2. 索引類型 11.3. 多字段索引 11.4. 索引和ORDER BY 11.5. 組合多個索引 11.6. 唯一索引 11.7. 表達(dá)式上的索引 11.8. 部分索引 11.9. 操作類和操作簇 11.10. 檢查索引的使用 章12. Full Text Search 12.1. Introduction 12.2. Tables and Indexes 12.3. Controlling Text Search 12.4. Additional Features 12.5. Parsers 12.6. Dictionaries 12.7. Configuration Example 12.8. Testing and Debugging Text Search 12.9. GiST and GIN Index Types 12.10. psql Support 12.11. Limitations 12.12. Migration from Pre-8.3 Text Search 章13. 并發(fā)控制 13.1. 介紹 13.2. 事務(wù)隔離 13.3. 明確鎖定 13.4. 應(yīng)用層數(shù)據(jù)完整性檢查 13.5. 鎖和索引 章14. 性能提升技巧 14.1. 使用EXPLAIN 14.2. 規(guī)劃器使用的統(tǒng)計信息 14.3. 用明確的JOIN語句控制規(guī)劃器 14.4. 向數(shù)據(jù)庫中添加記錄 14.5. 非持久性設(shè)置 III. 服務(wù)器管理 章15. 安裝指導(dǎo) 15.1. 簡版 15.2. 要求 15.3. 獲取源碼 15.4. 升級 15.5. 安裝過程 15.6. 安裝后的設(shè)置 15.7. 支持的平臺 15.8. 特殊平臺的要求 章16. Installation from Source Code on Windows 16.1. Building with Visual C++ or the Platform SDK 16.2. Building libpq with Visual C++ or Borland C++ 章17. 服務(wù)器安裝和操作 17.1. PostgreSQL用戶帳戶 17.2. 創(chuàng)建數(shù)據(jù)庫集群 17.3. 啟動數(shù)據(jù)庫服務(wù)器 17.4. 管理內(nèi)核資源 17.5. 關(guān)閉服務(wù) 17.6. 防止服務(wù)器欺騙 17.7. 加密選項 17.8. 用SSL進(jìn)行安全的TCP/IP連接 17.9. Secure TCP/IP Connections with SSH Tunnels 章18. 服務(wù)器配置 18.1. 設(shè)置參數(shù) 18.2. 文件位置 18.3. 連接和認(rèn)證 18.4. 資源消耗 18.5. 預(yù)寫式日志 18.6. 查詢規(guī)劃 18.7. 錯誤報告和日志 18.8. 運行時統(tǒng)計 18.9. 自動清理 18.10. 客戶端連接缺省 18.12. 版本和平臺兼容性 18.11. 鎖管理 18.13. 預(yù)置選項 18.14. 自定義的選項 18.15. 開發(fā)人員選項 18.16. 短選項 章19. 用戶認(rèn)證 19.1. pg_hba.conf 文件 19.2. 用戶名映射 19.3. 認(rèn)證方法 19.4. 用戶認(rèn)證 章20. 數(shù)據(jù)庫角色和權(quán)限 20.1. 數(shù)據(jù)庫角色 20.2. 角色屬性 20.3. 權(quán)限 20.4. 角色成員 20.5. 函數(shù)和觸發(fā)器 章21. 管理數(shù)據(jù)庫 21.1. 概述 21.2. 創(chuàng)建一個數(shù)據(jù)庫 21.3. 臨時庫 21.4. 數(shù)據(jù)庫配置 21.5. 刪除數(shù)據(jù)庫 21.6. 表空間 章22. 本土化 22.1. 區(qū)域支持 22.2. 字符集支持 章23. 日常數(shù)據(jù)庫維護(hù)工作 23.1. Routine Vacuuming日常清理 23.2. 經(jīng)常重建索引 23.3. 日志文件維護(hù) 章24. 備份和恢復(fù) 24.1. SQL轉(zhuǎn)儲 24.2. 文件系統(tǒng)級別的備份 24.3. 在線備份以及即時恢復(fù)(PITR) 24.4. 版本間遷移 章25. 高可用性與負(fù)載均衡,復(fù)制 25.1. 不同解決方案的比較 25.2. 日志傳送備份服務(wù)器 25.3. 失效切換 25.4. 日志傳送的替代方法 25.5. 熱備 章26. 恢復(fù)配置 26.1. 歸檔恢復(fù)設(shè)置 26.2. 恢復(fù)目標(biāo)設(shè)置 26.3. 備服務(wù)器設(shè)置 章27. 監(jiān)控數(shù)據(jù)庫的活動 27.1. 標(biāo)準(zhǔn)Unix工具 27.2. 統(tǒng)計收集器 27.3. 查看鎖 27.4. 動態(tài)跟蹤 章28. 監(jiān)控磁盤使用情況 28.1. 判斷磁盤的使用量 28.2. 磁盤滿導(dǎo)致的失效 章29. 可靠性和預(yù)寫式日志 29.1. 可靠性 29.2. 預(yù)寫式日志(WAL) 29.3. 異步提交 29.4. WAL配置 29.5. WAL內(nèi)部 章30. Regression Tests 30.1. Running the Tests 30.2. Test Evaluation 30.3. Variant Comparison Files 30.4. Test Coverage Examination IV. 客戶端接口 章31. libpq-C庫 31.1. 數(shù)據(jù)庫聯(lián)接函數(shù) 31.2. 連接狀態(tài)函數(shù) 31.3. 命令執(zhí)行函數(shù) 31.4. 異步命令處理 31.5. 取消正在處理的查詢 31.6. 捷徑接口 31.7. 異步通知 31.8. 與COPY命令相關(guān)的函數(shù) 31.9. Control Functions 控制函數(shù) 31.10. 其他函數(shù) 31.11. 注意信息處理 31.12. 事件系統(tǒng) 31.13. 環(huán)境變量 31.14. 口令文件 31.15. 連接服務(wù)的文件 31.16. LDAP查找連接參數(shù) 31.17. SSL支持 31.18. 在多線程程序里的行為 31.19. 制作libpq程序 31.20. 例子程序 章32. 大對象 32.1. 介紹 32.2. 實現(xiàn)特點 32.3. 客戶端接口 32.4. 服務(wù)器端函數(shù) 32.5. 例子程序 章33. ECPG - Embedded SQL in C 33.1. The Concept 33.2. Connecting to the Database Server 33.3. Closing a Connection 33.4. Running SQL Commands 33.5. Choosing a Connection 33.6. Using Host Variables 33.7. Dynamic SQL 33.8. pgtypes library 33.9. Using Descriptor Areas 33.10. Informix compatibility mode 33.11. Error Handling 33.12. Preprocessor directives 33.13. Processing Embedded SQL Programs 33.14. Library Functions 33.15. Internals 章34. 信息模式 34.1. 關(guān)于這個模式 34.2. 數(shù)據(jù)類型 34.3. information_schema_catalog_name 34.4. administrable_role_authorizations 34.5. applicable_roles 34.6. attributes 34.7. check_constraint_routine_usage 34.8. check_constraints 34.9. column_domain_usage 34.10. column_privileges 34.11. column_udt_usage 34.12. 字段 34.13. constraint_column_usage 34.14. constraint_table_usage 34.15. data_type_privileges 34.16. domain_constraints 34.18. domains 34.17. domain_udt_usage 34.19. element_types 34.20. enabled_roles 34.21. foreign_data_wrapper_options 34.22. foreign_data_wrappers 34.23. foreign_server_options 34.24. foreign_servers 34.25. key_column_usage 34.26. parameters 34.27. referential_constraints 34.28. role_column_grants 34.29. role_routine_grants 34.30. role_table_grants 34.31. role_usage_grants 34.32. routine_privileges 34.33. routines 34.34. schemata 34.35. sequences 34.36. sql_features 34.37. sql_implementation_info 34.38. sql_languages 34.39. sql_packages 34.40. sql_parts 34.41. sql_sizing 34.42. sql_sizing_profiles 34.43. table_constraints 34.44. table_privileges 34.45. tables 34.46. triggered_update_columns 34.47. 觸發(fā)器 34.48. usage_privileges 34.49. user_mapping_options 34.50. user_mappings 34.51. view_column_usage 34.52. view_routine_usage 34.53. view_table_usage 34.54. 視圖 V. 服務(wù)器端編程 章35. 擴(kuò)展SQL 35.1. 擴(kuò)展性是如何實現(xiàn)的 35.2. PostgreSQL類型系統(tǒng) 35.3. User-Defined Functions 35.4. Query Language (SQL) Functions 35.5. Function Overloading 35.6. Function Volatility Categories 35.7. Procedural Language Functions 35.8. Internal Functions 35.9. C-Language Functions 35.10. User-Defined Aggregates 35.11. User-Defined Types 35.12. User-Defined Operators 35.13. Operator Optimization Information 35.14. Interfacing Extensions To Indexes 35.15. 用C++擴(kuò)展 章36. 觸發(fā)器 36.1. 觸發(fā)器行為概述 36.3. 用 C 寫觸發(fā)器 36.2. 數(shù)據(jù)改變的可視性 36.4. 一個完整的例子 章37. 規(guī)則系統(tǒng) 37.1. The Query Tree 37.2. 視圖和規(guī)則系統(tǒng) 37.3. 在INSERT,UPDATE和DELETE上的規(guī)則 37.4. 規(guī)則和權(quán)限 37.5. 規(guī)則和命令狀態(tài) 37.6. 規(guī)則與觸發(fā)器得比較 章38. Procedural Languages 38.1. Installing Procedural Languages 章39. PL/pgSQL - SQL過程語言 39.1. 概述 39.2. PL/pgSQL的結(jié)構(gòu) 39.3. 聲明 39.4. 表達(dá)式 39.5. 基本語句 39.6. 控制結(jié)構(gòu) 39.7. 游標(biāo) 39.8. 錯誤和消息 39.9. 觸發(fā)器過程 39.10. PL/pgSQL Under the Hood 39.11. 開發(fā)PL/pgSQL的一些提示 39.12. 從OraclePL/SQL 進(jìn)行移植 章40. PL/Tcl - Tcl Procedural Language 40.1. Overview 40.2. PL/Tcl Functions and Arguments 40.3. Data Values in PL/Tcl 40.4. Global Data in PL/Tcl 40.5. Database Access from PL/Tcl 40.6. Trigger Procedures in PL/Tcl 40.7. Modules and the unknown command 40.8. Tcl Procedure Names 章41. PL/Perl - Perl Procedural Language 41.1. PL/Perl Functions and Arguments 41.2. Data Values in PL/Perl 41.3. Built-in Functions 41.4. Global Values in PL/Perl 41.6. PL/Perl Triggers 41.5. Trusted and Untrusted PL/Perl 41.7. PL/Perl Under the Hood 章42. PL/Python - Python Procedural Language 42.1. Python 2 vs. Python 3 42.2. PL/Python Functions 42.3. Data Values 42.4. Sharing Data 42.5. Anonymous Code Blocks 42.6. Trigger Functions 42.7. Database Access 42.8. Utility Functions 42.9. Environment Variables 章43. Server Programming Interface 43.1. Interface Functions Spi-spi-connect Spi-spi-finish Spi-spi-push Spi-spi-pop Spi-spi-execute Spi-spi-exec Spi-spi-execute-with-args Spi-spi-prepare Spi-spi-prepare-cursor Spi-spi-prepare-params Spi-spi-getargcount Spi-spi-getargtypeid Spi-spi-is-cursor-plan Spi-spi-execute-plan Spi-spi-execute-plan-with-paramlist Spi-spi-execp Spi-spi-cursor-open Spi-spi-cursor-open-with-args Spi-spi-cursor-open-with-paramlist Spi-spi-cursor-find Spi-spi-cursor-fetch Spi-spi-cursor-move Spi-spi-scroll-cursor-fetch Spi-spi-scroll-cursor-move Spi-spi-cursor-close Spi-spi-saveplan 43.2. Interface Support Functions Spi-spi-fname Spi-spi-fnumber Spi-spi-getvalue Spi-spi-getbinval Spi-spi-gettype Spi-spi-gettypeid Spi-spi-getrelname Spi-spi-getnspname 43.3. Memory Management Spi-spi-palloc Spi-realloc Spi-spi-pfree Spi-spi-copytuple Spi-spi-returntuple Spi-spi-modifytuple Spi-spi-freetuple Spi-spi-freetupletable Spi-spi-freeplan 43.4. Visibility of Data Changes 43.5. Examples VI. 參考手冊 I. SQL命令 Sql-abort Sql-alteraggregate Sql-alterconversion Sql-alterdatabase Sql-alterdefaultprivileges Sql-alterdomain Sql-alterforeigndatawrapper Sql-alterfunction Sql-altergroup Sql-alterindex Sql-alterlanguage Sql-alterlargeobject Sql-alteroperator Sql-alteropclass Sql-alteropfamily Sql-alterrole Sql-alterschema Sql-altersequence Sql-alterserver Sql-altertable Sql-altertablespace Sql-altertsconfig Sql-altertsdictionary Sql-altertsparser Sql-altertstemplate Sql-altertrigger Sql-altertype Sql-alteruser Sql-alterusermapping Sql-alterview Sql-analyze Sql-begin Sql-checkpoint Sql-close Sql-cluster Sql-comment Sql-commit Sql-commit-prepared Sql-copy Sql-createaggregate Sql-createcast Sql-createconstraint Sql-createconversion Sql-createdatabase Sql-createdomain Sql-createforeigndatawrapper Sql-createfunction Sql-creategroup Sql-createindex Sql-createlanguage Sql-createoperator Sql-createopclass Sql-createopfamily Sql-createrole Sql-createrule Sql-createschema Sql-createsequence Sql-createserver Sql-createtable Sql-createtableas Sql-createtablespace Sql-createtsconfig Sql-createtsdictionary Sql-createtsparser Sql-createtstemplate Sql-createtrigger Sql-createtype Sql-createuser Sql-createusermapping Sql-createview Sql-deallocate Sql-declare Sql-delete Sql-discard Sql-do Sql-dropaggregate Sql-dropcast Sql-dropconversion Sql-dropdatabase Sql-dropdomain Sql-dropforeigndatawrapper Sql-dropfunction Sql-dropgroup Sql-dropindex Sql-droplanguage Sql-dropoperator Sql-dropopclass Sql-dropopfamily Sql-drop-owned Sql-droprole Sql-droprule Sql-dropschema Sql-dropsequence Sql-dropserver Sql-droptable Sql-droptablespace Sql-droptsconfig Sql-droptsdictionary Sql-droptsparser Sql-droptstemplate Sql-droptrigger Sql-droptype Sql-dropuser Sql-dropusermapping Sql-dropview Sql-end Sql-execute Sql-explain Sql-fetch Sql-grant Sql-insert Sql-listen Sql-load Sql-lock Sql-move Sql-notify Sql-prepare Sql-prepare-transaction Sql-reassign-owned Sql-reindex Sql-release-savepoint Sql-reset Sql-revoke Sql-rollback Sql-rollback-prepared Sql-rollback-to Sql-savepoint Sql-select Sql-selectinto Sql-set Sql-set-constraints Sql-set-role Sql-set-session-authorization Sql-set-transaction Sql-show Sql-start-transaction Sql-truncate Sql-unlisten Sql-update Sql-vacuum Sql-values II. 客戶端應(yīng)用程序 App-clusterdb App-createdb App-createlang App-createuser App-dropdb App-droplang App-dropuser App-ecpg App-pgconfig App-pgdump App-pg-dumpall App-pgrestore App-psql App-reindexdb App-vacuumdb III. PostgreSQL服務(wù)器應(yīng)用程序 App-initdb App-pgcontroldata App-pg-ctl App-pgresetxlog App-postgres App-postmaster VII. 內(nèi)部 章44. PostgreSQL內(nèi)部概覽 44.1. 查詢路徑 44.2. 連接是如何建立起來的 44.3. 分析器階段 44.4. ThePostgreSQL規(guī)則系統(tǒng) 44.5. 規(guī)劃器/優(yōu)化器 44.6. 執(zhí)行器 章45. 系統(tǒng)表 45.1. 概述 45.2. pg_aggregate 45.3. pg_am 45.4. pg_amop 45.5. pg_amproc 45.6. pg_attrdef 45.7. pg_attribute 45.8. pg_authid 45.9. pg_auth_members 45.10. pg_cast 45.11. pg_class 45.12. pg_constraint 45.13. pg_conversion 45.14. pg_database 45.15. pg_db_role_setting 45.16. pg_default_acl 45.17. pg_depend 45.18. pg_description 45.19. pg_enum 45.20. pg_foreign_data_wrapper 45.21. pg_foreign_server 45.22. pg_index 45.23. pg_inherits 45.24. pg_language 45.25. pg_largeobject 45.26. pg_largeobject_metadata 45.27. pg_namespace 45.28. pg_opclass 45.29. pg_operator 45.30. pg_opfamily 45.31. pg_pltemplate 45.32. pg_proc 45.33. pg_rewrite 45.34. pg_shdepend 45.35. pg_shdescription 45.36. pg_statistic 45.37. pg_tablespace 45.38. pg_trigger 45.39. pg_ts_config 45.40. pg_ts_config_map 45.41. pg_ts_dict 45.42. pg_ts_parser 45.43. pg_ts_template 45.44. pg_type 45.45. pg_user_mapping 45.46. System Views 45.47. pg_cursors 45.48. pg_group 45.49. pg_indexes 45.50. pg_locks 45.51. pg_prepared_statements 45.52. pg_prepared_xacts 45.53. pg_roles 45.54. pg_rules 45.55. pg_settings 45.56. pg_shadow 45.57. pg_stats 45.58. pg_tables 45.59. pg_timezone_abbrevs 45.60. pg_timezone_names 45.61. pg_user 45.62. pg_user_mappings 45.63. pg_views 章46. Frontend/Backend Protocol 46.1. Overview 46.2. Message Flow 46.3. Streaming Replication Protocol 46.4. Message Data Types 46.5. Message Formats 46.6. Error and Notice Message Fields 46.7. Summary of Changes since Protocol 2.0 47. PostgreSQL Coding Conventions 47.1. Formatting 47.2. Reporting Errors Within the Server 47.3. Error Message Style Guide 章48. Native Language Support 48.1. For the Translator 48.2. For the Programmer 章49. Writing A Procedural Language Handler 章50. Genetic Query Optimizer 50.1. Query Handling as a Complex Optimization Problem 50.2. Genetic Algorithms 50.3. Genetic Query Optimization (GEQO) in PostgreSQL 50.4. Further Reading 章51. 索引訪問方法接口定義 51.1. 索引的系統(tǒng)表記錄 51.2. 索引訪問方法函數(shù) 51.3. 索引掃描 51.4. 索引鎖的考量 51.5. 索引唯一性檢查 51.6. 索引開銷估計函數(shù) 章52. GiST Indexes 52.1. Introduction 52.2. Extensibility 52.3. Implementation 52.4. Examples 52.5. Crash Recovery 章53. GIN Indexes 53.1. Introduction 53.2. Extensibility 53.3. Implementation 53.4. GIN tips and tricks 53.5. Limitations 53.6. Examples 章54. 數(shù)據(jù)庫物理存儲 54.1. 數(shù)據(jù)庫文件布局 54.2. TOAST 54.3. 自由空間映射 54.4. 可見映射 54.5. 數(shù)據(jù)庫分頁文件 章55. BKI后端接口 55.1. BKI 文件格式 55.2. BKI命令 55.3. 系統(tǒng)初始化的BKI文件的結(jié)構(gòu) 55.4. 例子 章56. 規(guī)劃器如何使用統(tǒng)計信息 56.1. 行預(yù)期的例子 VIII. 附錄 A. PostgreSQL錯誤代碼 B. 日期/時間支持 B.1. 日期/時間輸入解析 B.2. 日期/時間關(guān)鍵字 B.3. 日期/時間配置文件 B.4. 日期單位的歷史 C. SQL關(guān)鍵字 D. SQL Conformance D.1. Supported Features D.2. Unsupported Features E. Release Notes Release-0-01 Release-0-02 Release-0-03 Release-1-0 Release-1-01 Release-1-02 Release-1-09 Release-6-0 Release-6-1 Release-6-1-1 Release-6-2 Release-6-2-1 Release-6-3 Release-6-3-1 Release-6-3-2 Release-6-4 Release-6-4-1 Release-6-4-2 Release-6-5 Release-6-5-1 Release-6-5-2 Release-6-5-3 Release-7-0 Release-7-0-1 Release-7-0-2 Release-7-0-3 Release-7-1 Release-7-1-1 Release-7-1-2 Release-7-1-3 Release-7-2 Release-7-2-1 Release-7-2-2 Release-7-2-3 Release-7-2-4 Release-7-2-5 Release-7-2-6 Release-7-2-7 Release-7-2-8 Release-7-3 Release-7-3-1 Release-7-3-10 Release-7-3-11 Release-7-3-12 Release-7-3-13 Release-7-3-14 Release-7-3-15 Release-7-3-16 Release-7-3-17 Release-7-3-18 Release-7-3-19 Release-7-3-2 Release-7-3-20 Release-7-3-21 Release-7-3-3 Release-7-3-4 Release-7-3-5 Release-7-3-6 Release-7-3-7 Release-7-3-8 Release-7-3-9 Release-7-4 Release-7-4-1 Release-7-4-10 Release-7-4-11 Release-7-4-12 Release-7-4-13 Release-7-4-14 Release-7-4-15 Release-7-4-16 Release-7-4-17 Release-7-4-18 Release-7-4-19 Release-7-4-2 Release-7-4-20 Release-7-4-21 Release-7-4-22 Release-7-4-23 Release-7-4-24 Release-7-4-25 Release-7-4-26 Release-7-4-27 Release-7-4-28 Release-7-4-29 Release-7-4-3 Release-7-4-30 Release-7-4-4 Release-7-4-5 Release-7-4-6 Release-7-4-7 Release-7-4-8 Release-7-4-9 Release-8-0 Release-8-0-1 Release-8-0-10 Release-8-0-11 Release-8-0-12 Release-8-0-13 Release-8-0-14 Release-8-0-15 Release-8-0-16 Release-8-0-17 Release-8-0-18 Release-8-0-19 Release-8-0-2 Release-8-0-20 Release-8-0-21 Release-8-0-22 Release-8-0-23 Release-8-0-24 Release-8-0-25 Release-8-0-26 Release-8-0-3 Release-8-0-4 Release-8-0-5 Release-8-0-6 Release-8-0-7 Release-8-0-8 Release-8-0-9 Release-8-1 Release-8-1-1 Release-8-1-10 Release-8-1-11 Release-8-1-12 Release-8-1-13 Release-8-1-14 Release-8-1-15 Release-8-1-16 Release-8-1-17 Release-8-1-18 Release-8-1-19 Release-8-1-2 Release-8-1-20 Release-8-1-21 Release-8-1-22 Release-8-1-23 Release-8-1-3 Release-8-1-4 Release-8-1-5 Release-8-1-6 Release-8-1-7 Release-8-1-8 Release-8-1-9 Release-8-2 Release-8-2-1 Release-8-2-10 Release-8-2-11 Release-8-2-12 Release-8-2-13 Release-8-2-14 Release-8-2-15 Release-8-2-16 Release-8-2-17 Release-8-2-18 Release-8-2-19 Release-8-2-2 Release-8-2-20 Release-8-2-21 Release-8-2-3 Release-8-2-4 Release-8-2-5 Release-8-2-6 Release-8-2-7 Release-8-2-8 Release-8-2-9 Release-8-3 Release-8-3-1 Release-8-3-10 Release-8-3-11 Release-8-3-12 Release-8-3-13 Release-8-3-14 Release-8-3-15 Release-8-3-2 Release-8-3-3 Release-8-3-4 Release-8-3-5 Release-8-3-6 Release-8-3-7 Release-8-3-8 Release-8-3-9 Release-8-4 Release-8-4-1 Release-8-4-2 Release-8-4-3 Release-8-4-4 Release-8-4-5 Release-8-4-6 Release-8-4-7 Release-8-4-8 Release-9-0 Release-9-0-1 Release-9-0-2 Release-9-0-3 Release-9-0-4 F. 額外提供的模塊 F.1. adminpack F.2. auto_explain F.3. btree_gin F.4. btree_gist F.5. chkpass F.6. citext F.7. cube F.8. dblink Contrib-dblink-connect Contrib-dblink-connect-u Contrib-dblink-disconnect Contrib-dblink Contrib-dblink-exec Contrib-dblink-open Contrib-dblink-fetch Contrib-dblink-close Contrib-dblink-get-connections Contrib-dblink-error-message Contrib-dblink-send-query Contrib-dblink-is-busy Contrib-dblink-get-notify Contrib-dblink-get-result Contrib-dblink-cancel-query Contrib-dblink-get-pkey Contrib-dblink-build-sql-insert Contrib-dblink-build-sql-delete Contrib-dblink-build-sql-update F.9. dict_int F.10. dict_xsyn F.11. earthdistance F.12. fuzzystrmatch F.13. hstore F.14. intagg F.15. intarray F.16. isn F.17. lo F.18. ltree F.19. oid2name F.20. pageinspect F.21. passwordcheck F.22. pg_archivecleanup F.23. pgbench F.24. pg_buffercache F.25. pgcrypto F.26. pg_freespacemap F.27. pgrowlocks F.28. pg_standby F.29. pg_stat_statements F.30. pgstattuple F.31. pg_trgm F.32. pg_upgrade F.33. seg F.34. spi F.35. sslinfo F.36. tablefunc F.37. test_parser F.38. tsearch2 F.39. unaccent F.40. uuid-ossp F.41. vacuumlo F.42. xml2 G. 外部項目 G.1. 客戶端接口 G.2. 過程語言 G.3. 擴(kuò)展 H. The Source Code Repository H.1. Getting The Source Via Git I. 文檔 I.1. DocBook I.2. 工具集 I.3. 制作文檔 I.4. 文檔寫作 I.5. 風(fēng)格指導(dǎo) J. 首字母縮略詞 參考書目 Bookindex Index
characters

12.3. Controlling Text Search

To implement full text searching there must be a function to create a tsvector from a document and a tsquery from a user query. Also, we need to return results in a useful order, so we need a function that compares documents with respect to their relevance to the query. It's also important to be able to display the results nicely. PostgreSQL provides support for all of these functions.

12.3.1. Parsing Documents

PostgreSQL provides the function to_tsvector for converting a document to the tsvector data type.

to_tsvector([ config regconfig, ] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a tsvector which lists the lexemes together with their positions in the document. The document is processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector('english', 'a fat  cat sat on a mat - it ate a fat rats');
                  to_tsvector
-----------------------------------------------------
 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the word rats became rat, and the punctuation sign - was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where the list can vary depending on the token type. The first dictionary that recognizes the token emits one or more normalized lexemes to represent the token. For example, rats became rat because one of the dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful in searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token then it is also ignored. In this example that happened to the punctuation sign - because there are in fact no dictionaries assigned for its token type (Space symbols), meaning space tokens will never be indexed. The choices of parser, dictionaries and which types of tokens to index are determined by the selected text search configuration (Section 12.7). It is possible to have many different configurations in the same database, and predefined configurations are available for various languages. In our example we used the default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts of a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field might be null. Here is the recommended method for creating a tsvector from a structured document:

UPDATE tt SET ti =
    setweight(to_tsvector(coalesce(title,'')), 'A')    ||
    setweight(to_tsvector(coalesce(keyword,'')), 'B')  ||
    setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
    setweight(to_tsvector(coalesce(body,'')), 'D');

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then merged the labeled tsvector values using the tsvector concatenation operator ||. (Section 12.4.1 gives details about these operations.)

12.3.2. Parsing Queries

PostgreSQL provides the functions to_tsquery and plainto_tsquery for converting a query to the tsquery data type. to_tsquery offers access to more features than plainto_tsquery, but is less forgiving about its input.

to_tsquery([ config regconfig, ] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single tokens separated by the Boolean operators & (AND), | (OR) and ! (NOT). These operators can be grouped using parentheses. In other words, the input to to_tsquery must already follow the general rules for tsquery input, as described in Section 8.11. The difference is that while basic tsquery input takes the tokens at face value, to_tsquery normalizes each token to a lexeme using the specified or default configuration, and discards any tokens that are stop words according to the configuration. For example:

SELECT to_tsquery('english', 'The & Fat & Rats');
  to_tsquery   
---------------
 'fat' & 'rat'

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only tsvector lexemes of those weight(s). For example:

SELECT to_tsquery('english', 'Fat | Rats:AB');
    to_tsquery    
------------------
 'fat' | 'rat':AB

Also, * can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery('supern:*A & star:A*B');
        to_tsquery        
--------------------------
 'supern':*A & 'star':*AB

Such a lexeme will match any word in a tsvector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration includes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus contains the rule supernovae stars : sn:

SELECT to_tsquery('''supernovae stars'' & !crab');
  to_tsquery
---------------
 'sn' & !'crab'

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND or OR operator.

plainto_tsquery([ config regconfig, ] querytext text) returns tsquery

plainto_tsquery transforms unformatted text querytext to tsquery. The text is parsed and normalized much as for to_tsvector, then the & (AND) Boolean operator is inserted between surviving words.

Example:

SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery 
-----------------
 'fat' & 'rat'

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or prefix-match labels in its input:

SELECT plainto_tsquery('english', 'The Fat & Rats:C');
   plainto_tsquery   
---------------------
 'fat' & 'rat' & 'c'

Here, all the input punctuation was discarded as being space symbols.

12.3.3. Ranking Search Results

Ranking attempts to measure how relevant documents are to a particular query, so that when there are many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking functions, which take into account lexical, proximity, and structural information; that is, they consider how often the query terms appear in the document, how close together the terms are in the document, and how important is the part of the document where they occur. However, the concept of relevancy is vague and very application-specific. Different applications might require additional information for ranking, e.g., document modification time. The built-in ranking functions are only examples. You can write your own ranking functions and/or combine their results with additional factors to fit your specific needs.

The two ranking functions currently available are:

ts_rank([ weights float4[], ] vector tsvector,
        query tsquery [, normalization integer ]) returns float4

Standard ranking function.

ts_rank_cd([ weights float4[], ] vector tsvector,
           query tsquery [, normalization integer ]) returns float4

This function computes the cover density ranking for the given document vector and query, as described in Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three Term Queries" in the journal "Information Processing and Management", 1999.

This function requires positional information in its input. Therefore it will not work on "stripped" tsvector values — it will always return zero.

For both these functions, the optional weights argument offers the ability to weigh word instances more or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into account document size, e.g., a hundred-word document with five instances of a search word is probably more relevant than a thousand-word document with five instances. Both ranking functions take an integer normalization option that specifies whether and how a document's length should impact its rank. The integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors using | (for example, 2|4).

  • 0 (the default) ignores the document length

  • 1 divides the rank by 1 + the logarithm of the document length

  • 2 divides the rank by the document length

  • 4 divides the rank by the mean harmonic distance between extents (this is implemented only by ts_rank_cd)

  • 8 divides the rank by the number of unique words in document

  • 16 divides the rank by 1 + the logarithm of the number of unique words in document

  • 32 divides the rank by itself + 1

If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impossible to produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32 (rank/(rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a cosmetic change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
                     title                     |   rank
-----------------------------------------------+----------
 Neutrinos in the Sun                          |      3.1
 The Sudbury Neutrino Detector                 |      2.4
 A MACHO View of Galactic Dark Matter          |  2.01317
 Hot Gas and Dark Matter                       |  1.91171
 The Virgo Cluster: Hot Plasma and Dark Matter |  1.90953
 Rafting for Solar Neutrinos                   |      1.9
 NGC 4650A: Strange Galaxy and Dark Matter     |  1.85774
 Hot Gas and Dark Matter                       |   1.6123
 Ice Fishing for Cosmic Neutrinos              |      1.6
 Weak Lensing Distorts the Universe            | 0.818218

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */ ) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE  query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
                     title                     |        rank
-----------------------------------------------+-------------------
 Neutrinos in the Sun                          | 0.756097569485493
 The Sudbury Neutrino Detector                 | 0.705882361190954
 A MACHO View of Galactic Dark Matter          | 0.668123210574724
 Hot Gas and Dark Matter                       |  0.65655958650282
 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
 Rafting for Solar Neutrinos                   | 0.655172410958162
 NGC 4650A: Strange Galaxy and Dark Matter     | 0.650072921219637
 Hot Gas and Dark Matter                       | 0.617195790024749
 Ice Fishing for Cosmic Neutrinos              | 0.615384618911517
 Weak Lensing Distorts the Universe            | 0.450010798361481

Ranking can be expensive since it requires consulting the tsvector of each matching document, which can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical queries often result in large numbers of matches.

12.3.4. Highlighting Results

To present search results it is ideal to show a part of each document and how it is related to the query. Usually, search engines show fragments of the document with marked search terms. PostgreSQL provides a function ts_headline that implements this functionality.

ts_headline([ config regconfig, ] document text, query tsquery [, options text ]) returns text

ts_headline accepts a document along with a query, and returns an excerpt from the document in which terms from the query are highlighted. The configuration to be used to parse the document can be specified by config; if config is omitted, the default_text_search_config configuration is used.

If an options string is specified it must consist of a comma-separated list of one or more option=value pairs. The available options are:

  • StartSel, StopSel: the strings with which to delimit query words appearing in the document, to distinguish them from other excerpted words. You must double-quote these strings if they contain spaces or commas.

  • MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.

  • ShortWord: words of this length or less will be dropped at the start and end of a headline. The default value of three eliminates common English articles.

  • HighlightAll: Boolean flag; if true the whole document will be used as the headline, ignoring the preceding three parameters.

  • MaxFragments: maximum number of text excerpts or fragments to display. The default value of zero selects a non-fragment-oriented headline generation method. A value greater than zero selects fragment-based headline generation. This method finds text fragments with as many query words as possible and stretches those fragments around the query words. As a result query words are close to the middle of each fragment and have words on each side. Each fragment will be of at most MaxWords and words of length ShortWord or less are dropped at the start and end of each fragment. If not all query words are found in the document, then a single fragment of the first MinWords in the document will be displayed.

  • FragmentDelimiter: When more than one fragment is displayed, the fragments will be separated by this string.

Any unspecified options receive these defaults:

StartSel=<b>, StopSel=</b>,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline('english',
  'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
  to_tsquery('query & similarity'));
                        ts_headline                         
------------------------------------------------------------
 containing given <b>query</b> terms
 and return them in order of their <b>similarity</b> to the
 <b>query</b>.

SELECT ts_headline('english',
  'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
  to_tsquery('query & similarity'),
  'StartSel = <, StopSel = >');
                      ts_headline                      
-------------------------------------------------------
 containing given <query> terms
 and return them in order of their <similarity> to the
 <query>.

ts_headline uses the original document, not a tsvector summary, so it can be slow and should be used with care. A typical mistake is to call ts_headline for every matching document when only ten documents are to be shown. SQL subqueries can help; here is an example:

SELECT id, ts_headline(body, q), rank
FROM (SELECT id, body, q, ts_rank_cd(ti, q) AS rank
      FROM apod, to_tsquery('stars') q
      WHERE ti @@ q
      ORDER BY rank DESC
      LIMIT 10) AS foo;

Previous article: Next article: