


Bagaimana untuk melaraskan konfigurasi berjalan pycharm
Apr 25, 2024 am 09:48 AMKonfigurasikan konfigurasi run dalam PyCharm: Buat konfigurasi run: Dalam kotak dialog "Run/Debug Configurations", pilih templat "Python". Tentukan skrip dan parameter: Tentukan laluan skrip dan parameter baris arahan untuk dijalankan. Tetapkan persekitaran berjalan: pilih penterjemah Python dan ubah suai pembolehubah persekitaran. Tetapan Nyahpepijat: Dayakan/lumpuhkan ciri penyahpepijatan dan nyatakan port penyahpepijat. Pilihan penggunaan: Tetapkan pilihan penggunaan jauh, seperti menggunakan skrip ke pelayan. Nama dan simpan konfigurasi: Masukkan nama untuk konfigurasi dan simpannya.
Konfigurasi konfigurasi larian dalam PyCharm
PyCharm ialah persekitaran pembangunan bersepadu (IDE) Python yang popular yang menyediakan pilihan konfigurasi larian yang fleksibel, membolehkan pembangun melaksanakan dan menyahpepijat kod Python dengan cekap. Artikel ini akan membimbing anda melalui mengkonfigurasi konfigurasi larian dalam PyCharm.
Langkah 1: Buat konfigurasi run
- Buka PyCharm, pilih "Run" (Run) > "Edit Configurations" (Edit Configurations) dalam bar menu
- Dalam "Run/Debug Configurations" Debug Configuration) kotak dialog, klik butang "+"
- Pilih templat "Python" daripada senarai juntai bawah
Langkah 2: Tentukan skrip dan parameter
- Dalam medan "Laluan skrip", Menentukan laluan mutlak kepada skrip Python untuk dijalankan.
- Dalam medan Argumen, masukkan sebarang argumen baris perintah yang anda mahu hantar ke skrip.
Langkah 3: Sediakan persekitaran berjalan
- Dalam tab Jurubahasa, pilih penterjemah Python yang anda mahu gunakan untuk menjalankan skrip.
- Dalam tab "Persekitaran", anda boleh menetapkan pembolehubah persekitaran atau mengubah suai persekitaran pelaksanaan skrip.
Langkah 4: Tetapan Nyahpepijat
- Dalam tab Penyahpepijat, dayakan atau lumpuhkan nyahpepijat.
- Nyatakan port penyahpepijat dan alamat hos. .
Langkah 6: Namakan dan Simpan Konfigurasi
- Dalam medan Nama, masukkan nama untuk konfigurasi.
Run Configurations
- Selepas mencipta konfigurasi run, anda boleh menjalankan skrip dengan:
Gunakan pintasan papan kekunci (cth. Ctrl+R)
Profil:
Profilkan prestasi skrip anda dan kenal pasti kesesakan.- Unittests:
- Jalankan ujian unit dan laporkan keputusan ujian.
Atas ialah kandungan terperinci Bagaimana untuk melaraskan konfigurasi berjalan pycharm. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Iterator adalah objek yang melaksanakan kaedah __iter __ () dan __Next __ (). Penjana adalah versi Iterator yang dipermudahkan, yang secara automatik melaksanakan kaedah ini melalui kata kunci hasil. 1. Iterator mengembalikan elemen setiap kali dia memanggil seterusnya () dan melemparkan pengecualian berhenti apabila tidak ada lagi elemen. 2. Penjana menggunakan definisi fungsi untuk menghasilkan data atas permintaan, menjimatkan memori dan menyokong urutan tak terhingga. 3. Menggunakan Iterator apabila memproses set sedia ada, gunakan penjana apabila menghasilkan data besar secara dinamik atau penilaian malas, seperti garis pemuatan mengikut baris apabila membaca fail besar. NOTA: Objek yang boleh diperolehi seperti senarai bukanlah pengaliran. Mereka perlu dicipta semula selepas pemalar itu sampai ke penghujungnya, dan penjana hanya boleh melintasi sekali.

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

Untuk membuat objek sebagai penjana, anda perlu menjana nilai atas permintaan dengan menentukan fungsi yang mengandungi hasil, melaksanakan kelas -kelas yang dapat dilaksanakan \ _ \ _ iter \ _ dan \ _Ext _ _ kaedah, atau menggunakan ekspresi penjana. 1. Tentukan fungsi yang mengandungi hasil, kembalikan objek penjana apabila dipanggil dan menghasilkan nilai berturut -turut; 2. Melaksanakan \ _ \ _ iter \ _ \ _ dan \ _ \ _ Seterusnya \ _ \ _ \ _ dalam kelas tersuai untuk mengawal logik iteratif; 3. Gunakan ekspresi penjana untuk membuat penjana ringan dengan cepat, sesuai untuk transformasi mudah atau penapisan. Kaedah ini mengelakkan memuat semua data ke dalam ingatan, dengan itu meningkatkan kecekapan memori.

Untuk memanggil kod Python di C, anda mesti terlebih dahulu memulakan penterjemah, dan kemudian anda boleh mencapai interaksi dengan melaksanakan rentetan, fail, atau memanggil fungsi tertentu. 1. Inisialisasi penterjemah dengan py_initialize () dan tutupnya dengan py_finalize (); 2. Jalankan kod rentetan atau pyrun_simplefile dengan pyrun_simplefile; 3. Modul import melalui pyimport_importmodule, dapatkan fungsi melalui pyobject_getattrstring, bina parameter py_buildvalue, panggil fungsi dan proses kembali
