国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

首頁 后端開發(fā) Python教程 我嘗試過花崗巖。

我嘗試過花崗巖。

Oct 28, 2024 am 04:23 AM

I tried out Granite .

花崗巖3.0

Granite 3.0 是一個開源、輕量級的生成語言模型系列,專為一系列企業(yè)級任務而設計。它原生支持多語言功能、編碼、推理和工具使用,適合企業(yè)環(huán)境。

我測試了運行這個模型,看看它可以處理哪些任務。

環(huán)境設置

我在 Google Colab 中設置了 Granite 3.0 環(huán)境,并使用以下命令安裝了必要的庫:

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers

執(zhí)行

我測試了Granite 3.0的2B和8B型號的性能。

2B型號

我運行了 2B 模型。這是 2B 模型的代碼示例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])

輸出

<|start_of_role|>user<|end_of_role|>Please list one IBM Research laboratory located in the United States. You should only output its name and location.<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>1. IBM Research - Austin, Texas<|end_of_text|>

8B型號

將2b替換為8b即可使用8B模型。以下是 8B 模型的沒有角色和用戶輸入字段的代碼示例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, add_special_tokens=False, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

輸出

1. IBM Almaden Research Center - San Jose, California

函數(shù)調(diào)用

我探索了函數(shù)調(diào)用功能,并使用虛擬函數(shù)對其進行了測試。這里,get_current_weather 被定義為返回模擬天氣數(shù)據(jù)。

虛擬函數(shù)

import json

def get_current_weather(location: str) -> dict:
    """
    Retrieves current weather information for the specified location (default: San Francisco).
    Args:
        location (str): Name of the city to retrieve weather data for.
    Returns:
        dict: Dictionary containing weather information (temperature, description, humidity).
    """
    print(f"Getting current weather for {location}")

    try:
        weather_description = "sample"
        temperature = "20.0"
        humidity = "80.0"

        return {
            "description": weather_description,
            "temperature": temperature,
            "humidity": humidity
        }
    except Exception as e:
        print(f"Error fetching weather data: {e}")
        return {"weather": "NA"}

即時創(chuàng)作

我創(chuàng)建了一個調(diào)用該函數(shù)的提示:

functions = [
    {
        "name": "get_current_weather",
        "description": "Get the current weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and country code, e.g. San Francisco, US",
                }
            },
            "required": ["location"],
        },
    },
]
query = "What's the weather like in Boston?"
payload = {
    "functions_str": [json.dumps(x) for x in functions]
}
chat = [
    {"role":"system","content": f"You are a helpful assistant with access to the following function calls. Your task is to produce a sequence of function calls necessary to generate response to the user utterance. Use the following function calls as required.{payload}"},
    {"role": "user", "content": query }
]

響應生成

使用以下代碼,我生成了一個響應:

instruction_1 = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(instruction_1, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

輸出

{'name': 'get_current_weather', 'arguments': {'location': 'Boston'}}

這證實了模型能夠根據(jù)指定城市生成正確的函數(shù)調(diào)用。

增強交互流程的格式規(guī)范

Granite 3.0 允許格式規(guī)范以促進結構化格式的響應。本節(jié)解釋如何使用 [UTTERANCE] 進行回應,使用 [THINK] 進行內(nèi)心想法。

另一方面,由于函數(shù)調(diào)用以純文本形式輸出,因此可能需要實現(xiàn)單獨的機制來區(qū)分函數(shù)調(diào)用和常規(guī)文本響應。

指定輸出格式

以下是指導 AI 輸出的示例提示:

prompt = """You are a conversational AI assistant that deepens interactions by alternating between responses and inner thoughts.
<Constraints>
* Record spoken responses after the [UTTERANCE] tag and inner thoughts after the [THINK] tag.
* Use [UTTERANCE] as a start marker to begin outputting an utterance.
* After [THINK], describe your internal reasoning or strategy for the next response. This may include insights on the user's reaction, adjustments to improve interaction, or further goals to deepen the conversation.
* Important: **Use [UTTERANCE] and [THINK] as a start signal without needing a closing tag.**
</Constraints>

Follow these instructions, alternating between [UTTERANCE] and [THINK] formats for responses.
<output example>
example1:
  [UTTERANCE]Hello! How can I assist you today?[THINK]I’ll start with a neutral tone to understand their needs. Preparing to offer specific suggestions based on their response.[UTTERANCE]Thank you! In that case, I have a few methods I can suggest![THINK]Since I now know what they’re looking for, I'll move on to specific suggestions, maintaining a friendly and approachable tone.
...
</output example>

Please respond to the following user_input.
<user_input>
Hello! What can you do?
</user_input>
"""

執(zhí)行代碼示例

生成響應的代碼:

chat = [
    { "role": "user", "content": prompt },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

示例輸出

輸出如下:

[UTTERANCE]Hello! I'm here to provide information, answer questions, and assist with various tasks. I can help with a wide range of topics, from general knowledge to specific queries. How can I assist you today?
[THINK]I've introduced my capabilities and offered assistance, setting the stage for the user to share their needs or ask questions.

[UTTERANCE] 和 [THINK] 標簽已成功使用,允許有效的響應格式。

根據(jù)提示的不同,輸出中有時可能會出現(xiàn)結束標簽(例如[/UTTERANCE]或[/THINK]),但總的來說,一般都可以成功指定輸出格式。

流式傳輸代碼示例

讓我們看看如何輸出流響應。

以下代碼使用 asyncio 和線程庫來異步傳輸來自 Granite 3.0 的響應。

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers

示例輸出

運行上述代碼將生成以下格式的異步響應:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])

此示例演示了成功的流式傳輸。每個token都是異步生成并順序顯示,讓用戶可以實時查看生成過程。

概括

Granite 3.0 即使使用 8B 型號也能提供相當強的響應。函數(shù)調(diào)用和格式規(guī)范功能也運行良好,表明其具有廣泛的應用潛力。

以上是我嘗試過花崗巖。的詳細內(nèi)容。更多信息請關注PHP中文網(wǎng)其他相關文章!

本站聲明
本文內(nèi)容由網(wǎng)友自發(fā)貢獻,版權歸原作者所有,本站不承擔相應法律責任。如您發(fā)現(xiàn)有涉嫌抄襲侵權的內(nèi)容,請聯(lián)系admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣服圖片

Undresser.AI Undress

Undresser.AI Undress

人工智能驅(qū)動的應用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用于從照片中去除衣服的在線人工智能工具。

Clothoff.io

Clothoff.io

AI脫衣機

Video Face Swap

Video Face Swap

使用我們完全免費的人工智能換臉工具輕松在任何視頻中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的代碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

功能強大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級代碼編輯軟件(SublimeText3)

Python的UNITDEST或PYTEST框架如何促進自動測試? Python的UNITDEST或PYTEST框架如何促進自動測試? Jun 19, 2025 am 01:10 AM

Python的unittest和pytest是兩種廣泛使用的測試框架,它們都簡化了自動化測試的編寫、組織和運行。1.二者均支持自動發(fā)現(xiàn)測試用例并提供清晰的測試結構:unittest通過繼承TestCase類并以test\_開頭的方法定義測試;pytest則更為簡潔,只需以test\_開頭的函數(shù)即可。2.它們都內(nèi)置斷言支持:unittest提供assertEqual、assertTrue等方法,而pytest使用增強版的assert語句,能自動顯示失敗詳情。3.均具備處理測試準備與清理的機制:un

如何將Python用于數(shù)據(jù)分析和與Numpy和Pandas等文庫進行操作? 如何將Python用于數(shù)據(jù)分析和與Numpy和Pandas等文庫進行操作? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisionduetonumpyandpandas.1)numpyExccelSatnumericalComputationswithFast,多dimensionalArraysAndRaysAndOrsAndOrsAndOffectorizedOperationsLikenp.sqrt()

什么是動態(tài)編程技術,如何在Python中使用它們? 什么是動態(tài)編程技術,如何在Python中使用它們? Jun 20, 2025 am 12:57 AM

動態(tài)規(guī)劃(DP)通過將復雜問題分解為更簡單的子問題并存儲其結果以避免重復計算,來優(yōu)化求解過程。主要方法有兩種:1.自頂向下(記憶化):遞歸分解問題,使用緩存存儲中間結果;2.自底向上(表格化):從基礎情況開始迭代構建解決方案。適用于需要最大/最小值、最優(yōu)解或存在重疊子問題的場景,如斐波那契數(shù)列、背包問題等。在Python中,可通過裝飾器或數(shù)組實現(xiàn),并應注意識別遞推關系、定義基準情況及優(yōu)化空間復雜度。

如何使用__ITER__和__NEXT __在Python中實現(xiàn)自定義迭代器? 如何使用__ITER__和__NEXT __在Python中實現(xiàn)自定義迭代器? Jun 19, 2025 am 01:12 AM

要實現(xiàn)自定義迭代器,需在類中定義__iter__和__next__方法。①__iter__方法返回迭代器對象自身,通常為self,以兼容for循環(huán)等迭代環(huán)境;②__next__方法控制每次迭代的值,返回序列中的下一個元素,當無更多項時應拋出StopIteration異常;③需正確跟蹤狀態(tài)并設置終止條件,避免無限循環(huán);④可封裝復雜邏輯如文件行過濾,同時注意資源清理與內(nèi)存管理;⑤對簡單邏輯可考慮使用生成器函數(shù)yield替代,但需結合具體場景選擇合適方式。

Python編程語言及其生態(tài)系統(tǒng)的新興趨勢或未來方向是什么? Python編程語言及其生態(tài)系統(tǒng)的新興趨勢或未來方向是什么? Jun 19, 2025 am 01:09 AM

Python的未來趨勢包括性能優(yōu)化、更強的類型提示、替代運行時的興起及AI/ML領域的持續(xù)增長。首先,CPython持續(xù)優(yōu)化,通過更快的啟動時間、函數(shù)調(diào)用優(yōu)化及擬議中的整數(shù)操作改進提升性能;其次,類型提示深度集成至語言與工具鏈,增強代碼安全性與開發(fā)體驗;第三,PyScript、Nuitka等替代運行時提供新功能與性能優(yōu)勢;最后,AI與數(shù)據(jù)科學領域持續(xù)擴張,新興庫推動更高效的開發(fā)與集成。這些趨勢表明Python正不斷適應技術變化,保持其領先地位。

如何使用插座在Python中執(zhí)行網(wǎng)絡編程? 如何使用插座在Python中執(zhí)行網(wǎng)絡編程? Jun 20, 2025 am 12:56 AM

Python的socket模塊是網(wǎng)絡編程的基礎,提供低級網(wǎng)絡通信功能,適用于構建客戶端和服務器應用。要設置基本TCP服務器,需使用socket.socket()創(chuàng)建對象,綁定地址和端口,調(diào)用.listen()監(jiān)聽連接,并通過.accept()接受客戶端連接。構建TCP客戶端需創(chuàng)建socket對象后調(diào)用.connect()連接服務器,再使用.sendall()發(fā)送數(shù)據(jù)和.recv()接收響應。處理多個客戶端可通過1.線程:每次連接啟動新線程;2.異步I/O:如asyncio庫實現(xiàn)無阻塞通信。注意事

Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍睿浮耙环N接口,多種實現(xiàn)”,允許統(tǒng)一處理不同類型的對象。1.多態(tài)通過方法重寫實現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實現(xiàn)。2.多態(tài)的實際用途包括簡化代碼結構、增強可擴展性,例如圖形繪制程序中統(tǒng)一調(diào)用draw()方法,或游戲開發(fā)中處理不同角色的共同行為。3.Python實現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對象實現(xiàn)相同方法即可,這稱為“鴨子類型”。4.注意事項包括保持方

如何在Python中切片列表? 如何在Python中切片列表? Jun 20, 2025 am 12:51 AM

Python列表切片的核心答案是掌握[start:end:step]語法并理解其行為。1.列表切片的基本格式為list[start:end:step],其中start是起始索引(包含)、end是結束索引(不包含)、step是步長;2.省略start默認從0開始,省略end默認到末尾,省略step默認為1;3.獲取前n項用my_list[:n],獲取后n項用my_list[-n:];4.使用step可跳過元素,如my_list[::2]取偶數(shù)位,負step值可反轉列表;5.常見誤區(qū)包括end索引不

See all articles