国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

目錄
1. Understand the Two Main Approaches
2. Recognize Problems That Benefit From DP
3. Implementing DP in Python – A Simple Example
Top-down with memoization:
Bottom-up with tabulation:
4. Tips for Using DP Effectively
首頁 后端開發(fā) Python教程 什么是動態(tài)編程技術(shù),如何在Python中使用它們?

什么是動態(tài)編程技術(shù),如何在Python中使用它們?

Jun 20, 2025 am 12:57 AM
python 動態(tài)規(guī)劃

動態(tài)規(guī)劃(DP)通過將復(fù)雜問題分解為更簡單的子問題并存儲其結(jié)果以避免重復(fù)計算,來優(yōu)化求解過程。主要方法有兩種:1. 自頂向下(記憶化):遞歸分解問題,使用緩存存儲中間結(jié)果;2. 自底向上(表格化):從基礎(chǔ)情況開始迭代構(gòu)建解決方案。適用于需要最大/最小值、最優(yōu)解或存在重疊子問題的場景,如斐波那契數(shù)列、背包問題等。在Python中,可通過裝飾器或數(shù)組實現(xiàn),并應(yīng)注意識別遞推關(guān)系、定義基準情況及優(yōu)化空間復(fù)雜度。

What are dynamic programming techniques, and how do I use them in Python?

Dynamic programming (DP) is a method for solving complex problems by breaking them down into simpler subproblems. It's especially useful when those subproblems overlap — meaning the same subproblem shows up multiple times in the bigger problem.

Unlike divide-and-conquer methods (like recursion), which solve subproblems independently, DP stores the results of subproblems so they don’t need to be recomputed every time they come up. This technique is called memoization or caching.

In Python, you can implement dynamic programming using two main approaches: top-down with memoization and bottom-up with tabulation.


1. Understand the Two Main Approaches

There are two primary ways to implement dynamic programming:

  • Top-down (Memoization):
    You start from the original problem and break it down recursively. Along the way, you store computed results to avoid redundant calculations.
    In Python, this is often done using dictionaries or the lru_cache decorator from the functools module.

  • Bottom-up (Tabulation):
    You start from the base cases and build up solutions for larger and larger subproblems until you reach the original problem.
    This is usually implemented using loops and an array (or list) to store intermediate values.

Both approaches aim to reduce computation time by avoiding repeated work, but each has its own use case depending on the problem structure.


2. Recognize Problems That Benefit From DP

Some classic signs that a problem might benefit from dynamic programming:

  • The problem asks for:

    • Maximum or minimum value
    • Number of ways to do something
    • Optimal solution under certain constraints
  • Subproblems overlap (e.g., computing Fibonacci(n) requires both Fibonacci(n-1) and Fibonacci(n-2))

Common examples include:

  • Fibonacci sequence
  • Knapsack problem
  • Longest common subsequence (LCS)
  • Coin change problem
  • Edit distance

If you find yourself writing recursive code that gets slower as input size increases, DP might help speed things up.


3. Implementing DP in Python – A Simple Example

Let’s take the classic Fibonacci example to show how to apply both techniques.

Top-down with memoization:

from functools import lru_cache

@lru_cache(maxsize=None)
def fib_memo(n):
    if n <= 1:
        return n
    return fib_memo(n - 1)   fib_memo(n - 2)

This uses Python’s built-in cache decorator to remember previously computed values.

Bottom-up with tabulation:

def fib_tab(n):
    if n <= 1:
        return n
    dp = [0] * (n   1)
    dp[1] = 1
    for i in range(2, n   1):
        dp[i] = dp[i - 1]   dp[i - 2]
    return dp[n]

Here we build the solution iteratively, storing each result in a list.

You’ll notice the second version avoids recursion depth issues and may be more memory-efficient depending on how you manage storage.


4. Tips for Using DP Effectively

When applying dynamic programming:

  • Start by identifying the recurrence relation — how the current state relates to previous states.
  • Define your base cases clearly.
  • Think about space optimization — many DP problems can reduce memory usage by only keeping track of necessary previous steps.
  • Use lru_cache or cache decorators for quick memoization in Python 3.9 .
  • Practice on common patterns like 1D or 2D DP tables.

Also, not all DP problems require full arrays — sometimes just a few variables are enough to hold what you need.


It takes practice to get comfortable spotting where DP applies and choosing between top-down and bottom-up. But once you get the hang of it, it becomes a powerful tool for optimizing performance.基本上就這些。

以上是什么是動態(tài)編程技術(shù),如何在Python中使用它們?的詳細內(nèi)容。更多信息請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本站聲明
本文內(nèi)容由網(wǎng)友自發(fā)貢獻,版權(quán)歸原作者所有,本站不承擔(dān)相應(yīng)法律責(zé)任。如您發(fā)現(xiàn)有涉嫌抄襲侵權(quán)的內(nèi)容,請聯(lián)系admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣服圖片

Undresser.AI Undress

Undresser.AI Undress

人工智能驅(qū)動的應(yīng)用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用于從照片中去除衣服的在線人工智能工具。

Clothoff.io

Clothoff.io

AI脫衣機

Video Face Swap

Video Face Swap

使用我們完全免費的人工智能換臉工具輕松在任何視頻中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的代碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

功能強大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級代碼編輯軟件(SublimeText3)

如何一次迭代兩個列表 如何一次迭代兩個列表 Jul 09, 2025 am 01:13 AM

在Python中同時遍歷兩個列表的常用方法是使用zip()函數(shù),它會按順序配對多個列表并以最短為準;若列表長度不一致,可使用itertools.zip_longest()以最長為準并填充缺失值;結(jié)合enumerate()可同時獲取索引。1.zip()簡潔實用,適合成對數(shù)據(jù)迭代;2.zip_longest()處理不一致長度時可填充默認值;3.enumerate(zip())可在遍歷時獲取索引,滿足多種復(fù)雜場景需求。

什么是Python迭代器? 什么是Python迭代器? Jul 08, 2025 am 02:56 AM

Inpython,IteratorSareObjectSthallowloopingThroughCollectionsByImplementing_iter __()和__next __()。1)iteratorsWiaTheIteratorProtocol,使用__ITER __()toreTurnterateratoratoranteratoratoranteratoratorAnterAnteratoratorant antheittheext__()

如何從c打電話給python? 如何從c打電話給python? Jul 08, 2025 am 12:40 AM

要在C 中調(diào)用Python代碼,首先要初始化解釋器,然后可通過執(zhí)行字符串、文件或調(diào)用具體函數(shù)實現(xiàn)交互。1.使用Py_Initialize()初始化解釋器并用Py_Finalize()關(guān)閉;2.用PyRun_SimpleString執(zhí)行字符串代碼或PyRun_SimpleFile執(zhí)行腳本文件;3.通過PyImport_ImportModule導(dǎo)入模塊,PyObject_GetAttrString獲取函數(shù),Py_BuildValue構(gòu)造參數(shù),PyObject_CallObject調(diào)用函數(shù)并處理返回

Python類型中的遠期參考是什么? Python類型中的遠期參考是什么? Jul 09, 2025 am 01:46 AM

forwardReferencesInpythonAlowerReferencingClassesthatarenotyEtDefined defined insuesquotedTypenames.theysolvetheissueofmutualClassRassreferenceLikeUserAndProfileWhereOneCissInotyEtyEtyEtyetDefinedwhindenneTeNennEnneNeNeNeendendendendendenceDend.byenclistingtheclassnameInquotes(E.G.E.glistheClassNameInquotes)(E.G.G.G.G.G

在Python中解析XML數(shù)據(jù) 在Python中解析XML數(shù)據(jù) Jul 09, 2025 am 02:28 AM

處理XML數(shù)據(jù)在Python中常見且靈活,主要方法如下:1.使用xml.etree.ElementTree快速解析簡單XML,適合結(jié)構(gòu)清晰、層級不深的數(shù)據(jù);2.遇到命名空間時需手動添加前綴,如使用命名空間字典進行匹配;3.對于復(fù)雜XML推薦使用功能更強的第三方庫lxml,支持XPath2.0等高級特性,可通過pip安裝并導(dǎo)入使用。選擇合適工具是關(guān)鍵,小項目可用內(nèi)置模塊,復(fù)雜場景則選用lxml提升效率。

什么是python中的描述符 什么是python中的描述符 Jul 09, 2025 am 02:17 AM

描述符協(xié)議是Python中用于控制屬性訪問行為的機制,其核心答案在于實現(xiàn)__get__()、__set__()和__delete__()方法之一或多個。1.__get__(self,instance,owner)用于獲取屬性值;2.__set__(self,instance,value)用于設(shè)置屬性值;3.__delete__(self,instance)用于刪除屬性值。描述符的實際用途包括數(shù)據(jù)驗證、延遲計算屬性、屬性訪問日志記錄及實現(xiàn)property、classmethod等功能。描述符與pr

如果其他連鎖在python中,如何避免長時間 如果其他連鎖在python中,如何避免長時間 Jul 09, 2025 am 01:03 AM

遇到多個條件判斷時,可通過字典映射、match-case語法、策略模式、提前return等方式簡化if-elif-else鏈。1.使用字典將條件與對應(yīng)操作映射,提升擴展性;2.Python3.10 可用match-case結(jié)構(gòu),增強可讀性;3.復(fù)雜邏輯可抽象為策略模式或函數(shù)映射,分離主邏輯與分支處理;4.通過提前return減少嵌套層次,使代碼更簡潔清晰。這些方法有效提升代碼維護性和靈活性。

在Python中實施多線程 在Python中實施多線程 Jul 09, 2025 am 01:11 AM

Python多線程適合I/O密集型任務(wù)。1.適用于網(wǎng)絡(luò)請求、文件讀寫、用戶輸入等待等場景,例如多線程爬蟲可節(jié)省請求等待時間;2.不適合圖像處理、數(shù)學(xué)運算等計算密集型任務(wù),因受全局解釋器鎖(GIL)限制無法并行運算。實現(xiàn)方式:可通過threading模塊創(chuàng)建和啟動線程,并使用join()確保主線程等待子線程完成,使用Lock避免數(shù)據(jù)沖突,但不建議開啟過多線程以免影響性能。此外,concurrent.futures模塊的ThreadPoolExecutor提供更簡潔的用法,支持自動管理線程池、異步獲

See all articles