


Bolehkah Data Kumpulan NumPy Secara Cekap Berdasarkan Nilai Unik Lajur?
Dec 05, 2024 am 09:32 AMBolehkah NumPy Kumpulan Data mengikut Lajur Diberi?
Pengenalan:
Data pengelompokan ialah operasi penting dalam banyak senario analisis data. NumPy, perpustakaan berangka yang berkuasa dalam Python, menawarkan pelbagai fungsi untuk memanipulasi tatasusunan, tetapi ia tidak mempunyai fungsi kumpulan khusus. Artikel ini menunjukkan cara untuk mencapai pengelompokan dalam NumPy tanpa penggunaan eksplisit fungsi khusus.
Soalan:
Adakah terdapat fungsi dalam NumPy untuk mengumpulkan tatasusunan mengikut tatasusunannya lajur pertama, seperti yang ditunjukkan dalam tatasusunan yang disediakan?
array([[ 1, 275], [ 1, 441], [ 1, 494], [ 1, 593], [ 2, 679], [ 2, 533], [ 2, 686], [ 3, 559], [ 3, 219], [ 3, 455], [ 4, 605], [ 4, 468], [ 4, 692], [ 4, 613]])
Dijangka Output:
array([[[275, 441, 494, 593]], [[679, 533, 686]], [[559, 219, 455]], [[605, 468, 692, 613]]], dtype=object)
Jawapan:
Walaupun NumPy tidak secara eksplisit menyediakan fungsi "kumpulan mengikut", ia menawarkan pendekatan alternatif yang diilhamkan oleh Eelco Hoogendoorn's perpustakaan. Pendekatan ini bergantung pada andaian bahawa lajur pertama tatasusunan sentiasa meningkat. Jika ini tidak berlaku, mengisih tatasusunan mengikut lajur pertama adalah perlu menggunakan:
a = a[a[:, 0].argsort()]
Menggunakan andaian untuk meningkatkan nilai lajur pertama, kod berikut melaksanakan operasi pengumpulan:
np.split(a[:, 1], np.unique(a[:, 0], return_index=True)[1][1:])
Kod ini mengelompokkan elemen tatasusunan ke dalam subarray secara berkesan berdasarkan nilai unik dalam lajur pertama. Setiap subbaris mewakili kumpulan, yang mengandungi nilai lajur kedua untuk semua elemen dengan nilai lajur pertama yang sama.
Pertimbangan Tambahan:
- Kerumitan kaedah ini ialah O (n log(n)) disebabkan oleh operasi pengisihan.
- Senarai hasil ialah tatasusunan NumPy, menghapuskan keperluan untuk operasi penukaran untuk operasi NumPy berikutnya.
- Perbandingan Prestasi: Kaedah ini secara empirikal ditunjukkan lebih pantas daripada pendekatan pengelompokan lain, termasuk Panda dan lalai, untuk set data yang lebih kecil.
Oleh itu, NumPy menyediakan cara yang fleksibel dan cekap untuk mengumpulkan data dengan menggunakan manipulasi tatasusunan dan fungsi pengisihan, walaupun tanpa fungsi pengumpulan khusus.
Atas ialah kandungan terperinci Bolehkah Data Kumpulan NumPy Secara Cekap Berdasarkan Nilai Unik Lajur?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kunci untuk menangani pengesahan API adalah untuk memahami dan menggunakan kaedah pengesahan dengan betul. 1. Apikey adalah kaedah pengesahan yang paling mudah, biasanya diletakkan dalam tajuk permintaan atau parameter URL; 2. BasicAuth menggunakan nama pengguna dan kata laluan untuk penghantaran pengekodan Base64, yang sesuai untuk sistem dalaman; 3. OAuth2 perlu mendapatkan token terlebih dahulu melalui client_id dan client_secret, dan kemudian bawa bearertoken dalam header permintaan; 4. Untuk menangani tamat tempoh token, kelas pengurusan token boleh dikemas dan secara automatik menyegarkan token; Singkatnya, memilih kaedah yang sesuai mengikut dokumen dan menyimpan maklumat utama adalah kunci.

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

Untuk mewujudkan API moden dan cekap menggunakan Python, FastAPI disyorkan; Ia berdasarkan kepada jenis python standard yang diminta dan secara automatik dapat menghasilkan dokumen, dengan prestasi yang sangat baik. Selepas memasang FastAPI dan Asgi Server UVicorn, anda boleh menulis kod antara muka. Dengan menentukan laluan, menulis fungsi pemprosesan, dan data yang kembali, API boleh dibina dengan cepat. FastAPI menyokong pelbagai kaedah HTTP dan menyediakan sistem dokumentasi Swaggersui dan Redoc yang dihasilkan secara automatik. Parameter URL boleh ditangkap melalui definisi laluan, manakala parameter pertanyaan boleh dilaksanakan dengan menetapkan nilai lalai untuk parameter fungsi. Penggunaan rasional model Pydantic dapat membantu meningkatkan kecekapan dan ketepatan pembangunan.

Untuk menguji API, anda perlu menggunakan Perpustakaan Permintaan Python. Langkah -langkahnya adalah untuk memasang perpustakaan, menghantar permintaan, mengesahkan respons, menetapkan masa dan cuba semula. Pertama, pasang perpustakaan melalui PipinstallRequests; kemudian gunakan permintaan.get () atau requests.post () dan kaedah lain untuk menghantar permintaan GET atau pos; Kemudian semak respons.status_code dan response.json () untuk memastikan hasil pulangan mematuhi jangkaan; Akhirnya, tambah parameter tamat masa untuk menetapkan masa tamat, dan menggabungkan perpustakaan semula untuk mencapai percubaan automatik untuk meningkatkan kestabilan.

Dalam Python, pembolehubah yang ditakrifkan di dalam fungsi adalah pembolehubah tempatan dan hanya sah dalam fungsi; Ditakrifkan secara luaran adalah pembolehubah global yang boleh dibaca di mana sahaja. 1. Pembolehubah tempatan dimusnahkan kerana fungsi dilaksanakan; 2. Fungsi ini boleh mengakses pembolehubah global tetapi tidak dapat diubahsuai secara langsung, jadi kata kunci global diperlukan; 3. Jika anda ingin mengubah suai pembolehubah fungsi luar dalam fungsi bersarang, anda perlu menggunakan kata kunci nonlocal; 4. Pembolehubah dengan nama yang sama tidak mempengaruhi satu sama lain dalam skop yang berbeza; 5. Global mesti diisytiharkan apabila mengubah suai pembolehubah global, jika tidak, kesilapan unboundlocalerror akan dibangkitkan. Memahami peraturan ini membantu mengelakkan pepijat dan menulis lebih banyak fungsi yang boleh dipercayai.
