


Bagaimanakah saya boleh memformat paksi datetime dalam matplotlib untuk menunjukkan tahun dan bulan sahaja?
Oct 27, 2024 pm 06:46 PMMelaraskan Format Paksi Masa Tarikh
Dalam senario di mana anda mempunyai siri dengan indeks masa tarikh yang ingin anda gambarkan, anda mungkin menghadapi situasi di mana graf memaparkan cap masa termasuk jam, minit dan saat walaupun anda memilih format yang lebih ringkas seperti "yyyy-mm" atau "2016 Mac."
Untuk menangani isu ini dan mencapai pemformatan yang diingini, kami boleh memanfaatkan fungsi disediakan oleh matplotlib. Khususnya, paksi datetime boleh disesuaikan menggunakan pemformat. Pemformat ini membolehkan anda menentukan cara label tanda pada paksi-x harus dipaparkan.
Berikut ialah contoh yang menunjukkan penggunaan pemformat:
<code class="python">import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates # Sample data with hourly timestamps N = 30 drange = pd.date_range("2014-01", periods=N, freq="H") np.random.seed(365) values = {'values':np.random.randint(1,20,size=N)} df = pd.DataFrame(values, index=drange) # Create a plot with incorrect formatting fig, ax = plt.subplots() ax.plot(df.index, df.values) ax.set_xticks(df.index) # Use formatters to achieve the desired formatting ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) ax.xaxis.set_minor_formatter(mdates.DateFormatter("%Y-%m")) plt.xticks(rotation=90) # Display the updated plot with the desired formatting plt.show()</code>
Dalam contoh ini, kita mula-mula buat sampel DataFrame dengan cap waktu setiap jam. Kami kemudian menggunakan DateFormatter daripada matplotlib.dates untuk menyatakan bahawa label tanda pada paksi-x hendaklah dalam format "%Y-%m", yang mewakili tahun dan bulan sahaja. Akhir sekali, kami memanggil xticks untuk memutarkan label tanda untuk kebolehbacaan yang lebih baik.
Dengan melaksanakan pendekatan ini, anda boleh menyesuaikan format paksi waktu tarikh anda dengan berkesan, memastikan ia sejajar dengan keperluan paparan yang anda inginkan.
Atas ialah kandungan terperinci Bagaimanakah saya boleh memformat paksi datetime dalam matplotlib untuk menunjukkan tahun dan bulan sahaja?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kunci untuk menangani pengesahan API adalah untuk memahami dan menggunakan kaedah pengesahan dengan betul. 1. Apikey adalah kaedah pengesahan yang paling mudah, biasanya diletakkan dalam tajuk permintaan atau parameter URL; 2. BasicAuth menggunakan nama pengguna dan kata laluan untuk penghantaran pengekodan Base64, yang sesuai untuk sistem dalaman; 3. OAuth2 perlu mendapatkan token terlebih dahulu melalui client_id dan client_secret, dan kemudian bawa bearertoken dalam header permintaan; 4. Untuk menangani tamat tempoh token, kelas pengurusan token boleh dikemas dan secara automatik menyegarkan token; Singkatnya, memilih kaedah yang sesuai mengikut dokumen dan menyimpan maklumat utama adalah kunci.

Menegaskan adalah alat pernyataan yang digunakan dalam Python untuk menyahpepijat, dan melemparkan pernyataan apabila keadaan tidak dipenuhi. Sintaksnya adalah menegaskan keadaan ditambah maklumat ralat pilihan, yang sesuai untuk pengesahan logik dalaman seperti pemeriksaan parameter, pengesahan status, dan lain -lain, tetapi tidak boleh digunakan untuk pemeriksaan input keselamatan atau pengguna, dan harus digunakan bersamaan dengan maklumat yang jelas. Ia hanya tersedia untuk debugging tambahan dalam peringkat pembangunan dan bukannya menggantikan pengendalian pengecualian.

Kaedah yang sama untuk melintasi dua senarai secara serentak dalam Python adalah menggunakan fungsi zip (), yang akan memasangkan beberapa senarai dalam rangka dan menjadi yang paling singkat; Jika panjang senarai tidak konsisten, anda boleh menggunakan itertools.zip_longest () untuk menjadi yang paling lama dan mengisi nilai yang hilang; Digabungkan dengan penghitungan (), anda boleh mendapatkan indeks pada masa yang sama. 1.Zip () adalah ringkas dan praktikal, sesuai untuk lelaran data berpasangan; 2.zip_longest () boleh mengisi nilai lalai apabila berurusan dengan panjang yang tidak konsisten; 3.enumerate (zip ()) boleh mendapatkan indeks semasa traversal, memenuhi keperluan pelbagai senario kompleks.

Inpython, iteratorsareObjectsThatallowLoopingthroughCollectionsByImplementing__iter __ () dan__Next __ ()

TypehintsinpythonsolvetheproblemofambiguityandpotentialbugsindynamiciallytypodeByallowingDeveloperStospecifyExpectedTypes.theyenhancereadability, enablearlybugdetection, andimprovetoLiaSareAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeAdeSareadDeSareadDeSareadDeSareadDeSaread

Untuk mewujudkan API moden dan cekap menggunakan Python, FastAPI disyorkan; Ia berdasarkan kepada jenis python standard yang diminta dan secara automatik dapat menghasilkan dokumen, dengan prestasi yang sangat baik. Selepas memasang FastAPI dan Asgi Server UVicorn, anda boleh menulis kod antara muka. Dengan menentukan laluan, menulis fungsi pemprosesan, dan data yang kembali, API boleh dibina dengan cepat. FastAPI menyokong pelbagai kaedah HTTP dan menyediakan sistem dokumentasi Swaggersui dan Redoc yang dihasilkan secara automatik. Parameter URL boleh ditangkap melalui definisi laluan, manakala parameter pertanyaan boleh dilaksanakan dengan menetapkan nilai lalai untuk parameter fungsi. Penggunaan rasional model Pydantic dapat membantu meningkatkan kecekapan dan ketepatan pembangunan.

Untuk menguji API, anda perlu menggunakan Perpustakaan Permintaan Python. Langkah -langkahnya adalah untuk memasang perpustakaan, menghantar permintaan, mengesahkan respons, menetapkan masa dan cuba semula. Pertama, pasang perpustakaan melalui PipinstallRequests; kemudian gunakan permintaan.get () atau requests.post () dan kaedah lain untuk menghantar permintaan GET atau pos; Kemudian semak respons.status_code dan response.json () untuk memastikan hasil pulangan mematuhi jangkaan; Akhirnya, tambah parameter tamat masa untuk menetapkan masa tamat, dan menggabungkan perpustakaan semula untuk mencapai percubaan automatik untuk meningkatkan kestabilan.

Persekitaran maya boleh mengasingkan kebergantungan projek yang berbeza. Dicipta menggunakan modul Venv Python sendiri, perintah itu adalah python-mvenvenv; Kaedah pengaktifan: Windows menggunakan Env \ Scripts \ Activate, MacOS/Linux menggunakan Sourceenv/Bin/Activate; Pakej pemasangan menggunakan pipinstall, gunakan pipfreeze> keperluan.txt untuk menghasilkan fail keperluan, dan gunakan pipinstall-rrequirements.txt untuk memulihkan persekitaran; Langkah berjaga -jaga termasuk tidak menyerahkan kepada Git, mengaktifkan semula setiap kali terminal baru dibuka, dan pengenalan dan penukaran automatik boleh digunakan oleh IDE.
