国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

目次
Pandas を使用して Excel ファイルから特定のワークシートを効率的にロードする
解決策: pd.ExcelFile の利用
注意
複數(shù)のワークシートをロードするためのオプション
ホームページ バックエンド開発 Python チュートリアル Pandas を使用して大きな Excel ファイルから特定のワークシートのみを効率的にロードするにはどうすればよいですか?

Pandas を使用して大きな Excel ファイルから特定のワークシートのみを効率的にロードするにはどうすればよいですか?

Nov 28, 2024 pm 09:11 PM

How Can I Efficiently Load Only Specific Worksheets from a Large Excel File Using Pandas?

Pandas を使用して Excel ファイルから特定のワークシートを効率的にロードする

データ処理に Pandas を使用するコンテキストでは、多くの場合、Excel ファイルから特定のワークシートにアクセスする必要があります。 。ただし、pd.read_excel() 関數(shù)を使用する場合、ワークブック全體が必然的にメモリにロードされます。これにより、大きな Excel ファイルを扱うときにパフォーマンスの問題が発生する可能性があります。

解決策: pd.ExcelFile の利用

この課題を克服するために、Pandas は pd.ExcelFile クラスを提供します。このクラスを使用すると、Excel ファイルを一度ロードすると、ファイル全體を再ロードすることなく、必要に応じて個々のワークシートにアクセスできます。使用方法は次のとおりです。

import pandas as pd

# Read the Excel file using pd.ExcelFile
xls = pd.ExcelFile('path_to_file.xlsx')

# Load specific worksheets
df1 = pd.read_excel(xls, 'Sheet1')
df2 = pd.read_excel(xls, 'Sheet2')

注意

pd.ExcelFile を使用するとワークブック全體の冗長な読み込みが回避されますが、ファイルの初期読み込みが必要であることに注意することが重要です。これは、非常に大きな Excel ファイルの場合、メモリ使用量が依然として相當量になる可能性があることを意味します。

複數(shù)のワークシートをロードするためのオプション

pd.read_excel() 関數(shù)には、複數(shù)のワークシートをロードするためのオプションが用意されています。次のようにシート名またはインデックスのリストを指定できます:

# Load multiple sheets as a dictionary
sheet_names = ['Sheet1', 'Sheet2']
multiple_sheets = pd.read_excel('path_to_file.xlsx', sheet_name=sheet_names)

ファイル內(nèi)のすべてのシートを辭書としてロードするには、sheet_name 引數(shù)として None を使用します:

# Load all sheets as a dictionary
all_sheets = pd.read_excel('path_to_file.xlsx', sheet_name=None)

以上がPandas を使用して大きな Excel ファイルから特定のワークシートのみを効率的にロードするにはどうすればよいですか?の詳細內(nèi)容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當する法的責任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進しますか? Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進しますか? Jun 19, 2025 am 01:10 AM

Pythonの不適格でPytestは、自動テストの書き込み、整理、および実行を簡素化する2つの広く使用されているテストフレームワークです。 1.両方とも、テストケースの自動発見をサポートし、明確なテスト構(gòu)造を提供します。 pytestはより簡潔で、テスト\ _から始まる関數(shù)が必要です。 2。それらはすべて組み込みのアサーションサポートを持っています:Unittestはアサートエクイアル、アサートトルー、およびその他の方法を提供しますが、Pytestは拡張されたアサートステートメントを使用して障害の詳細を自動的に表示します。 3.すべてがテストの準備とクリーニングを処理するためのメカニズムを持っています:un

Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1)numpyexcelsatnumericalcompitations withfast、多次元路面およびベクトル化された分離likenp.sqrt()

動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? 動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? Jun 20, 2025 am 12:57 AM

動的プログラミング(DP)は、複雑な問題をより単純なサブ問題に分解し、結(jié)果を保存して繰り返し計算を回避することにより、ソリューションプロセスを最適化します。主な方法は2つあります。1。トップダウン(暗記):問題を再帰的に分解し、キャッシュを使用して中間結(jié)果を保存します。 2。ボトムアップ(表):基本的な狀況からソリューションを繰り返し構(gòu)築します。フィボナッチシーケンス、バックパッキングの問題など、最大/最小値、最適なソリューション、または重複するサブ問題が必要なシナリオに適しています。Pythonでは、デコレータまたはアレイを通じて実裝でき、再帰的な関係を特定し、ベンチマークの狀況を定義し、空間の複雑さを最適化することに注意する必要があります。

__iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? __iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? Jun 19, 2025 am 01:12 AM

カスタムイテレーターを?qū)g裝するには、クラス內(nèi)の__iter__および__next__メソッドを定義する必要があります。 __iter__メソッドは、ループなどの反復環(huán)境と互換性があるように、通常は自己の反復オブジェクト自體を返します。 __next__メソッドは、各反復の値を制御し、シーケンスの次の要素を返し、アイテムがもうない場合、停止例外をスローする必要があります。 statusステータスを正しく追跡する必要があり、無限のループを避けるために終了條件を設定する必要があります。 fileファイルラインフィルタリングなどの複雑なロジック、およびリソースクリーニングとメモリ管理に注意を払ってください。 simple単純なロジックについては、代わりにジェネレーター関數(shù)の収率を使用することを検討できますが、特定のシナリオに基づいて適切な方法を選択する必要があります。

Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Jun 19, 2025 am 01:09 AM

Pythonの將來の傾向には、パフォーマンスの最適化、より強力なタイププロンプト、代替ランタイムの増加、およびAI/MLフィールドの継続的な成長が含まれます。第一に、CPYTHONは最適化を続け、スタートアップのより速い時間、機能通話の最適化、および提案された整數(shù)操作を通じてパフォーマンスを向上させ続けています。第二に、タイプのプロンプトは、コードセキュリティと開発エクスペリエンスを強化するために、言語とツールチェーンに深く統(tǒng)合されています。第三に、PyscriptやNuitkaなどの代替のランタイムは、新しい機能とパフォーマンスの利點を提供します。最後に、AIとデータサイエンスの分野は拡大し続けており、新興図書館はより効率的な開発と統(tǒng)合を促進します。これらの傾向は、Pythonが常に技術(shù)の変化に適応し、その主要な位置を維持していることを示しています。

ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? Jun 20, 2025 am 12:56 AM

Pythonのソケットモジュールは、クライアントおよびサーバーアプリケーションの構(gòu)築に適した低レベルのネットワーク通信機能を提供するネットワークプログラミングの基礎です?;镜膜蔜CPサーバーを設定するには、Socket.Socket()を使用してオブジェクトを作成し、アドレスとポートをバインドし、.listen()を呼び出して接続をリッスンし、.accept()を介してクライアント接続を受け入れる必要があります。 TCPクライアントを構(gòu)築するには、ソケットオブジェクトを作成し、.connect()を呼び出してサーバーに接続する必要があります。次に、.sendall()を使用してデータと.recv()を送信して応答を受信します。複數(shù)のクライアントを処理するには、1つを使用できます。スレッド:接続するたびに新しいスレッドを起動します。 2。非同期I/O:たとえば、Asyncioライブラリは非ブロッキング通信を?qū)g現(xiàn)できます。注意すべきこと

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Pythonでリストをスライスするにはどうすればよいですか? Pythonでリストをスライスするにはどうすればよいですか? Jun 20, 2025 am 12:51 AM

Pythonリストスライスに対するコアの答えは、[start:end:step]構(gòu)文をマスターし、その動作を理解することです。 1.リストスライスの基本形式はリスト[start:end:step]です。ここで、開始は開始インデックス(含まれています)、endはend index(含まれていません)、ステップはステップサイズです。 2。デフォルトで開始を省略して、0から開始を開始し、デフォルトで終了して終了し、デフォルトでステップを1に省略します。 3。my_list[:n]を使用して最初のnアイテムを取得し、my_list [-n:]を使用して最後のnアイテムを取得します。 4.ステップを使用して、my_list [:: 2]などの要素をスキップして、均一な數(shù)字と負のステップ値を取得できます。 5.一般的な誤解には、終了インデックスが含まれません

See all articles