Interaction between C++ friend functions and virtual functions
Apr 16, 2024 pm 03:45 PMIn C, friend functions interact with virtual functions so that friend functions can access virtual functions and call friend functions in derived classes to access private members of the base class. This interaction can be used to access data hidden in the inheritance hierarchy or to implement polymorphic behavior.
C Interaction between friend function and virtual function
In C, a friend function is a method that can access class private functions and protected member functions. Virtual functions allow derived classes to override base class methods. The interaction between friend functions and virtual functions can be achieved in the following ways:
Case 1: Friend functions and virtual functions are accessed at the same time
When friend functions and virtual functions When accessing class members at the same time, you need to clearly specify which class's virtual function the friend function is accessing.
class Base { public: virtual void foo() { std::cout << "Base::foo()\n"; } }; class Derived : public Base { public: virtual void foo() override { std::cout << "Derived::foo()\n"; } }; class Friend { public: static void callFoo(Base& base) { base.foo(); } // 調(diào)用 Base::foo() static void callFoo(Derived& derived) { derived.foo(); } // 調(diào)用 Derived::foo() };
Case 2: Friend function call in virtual function
The virtual function of the derived class can call the friend function to access the private or protected base class member.
class Base { public: virtual void foo(); friend class Derived; }; class Derived : public Base { public: virtual void foo() override { // 調(diào)用友元函數(shù)訪問 Base 的私有成員 std::cout << m_privateMember << "\n"; } private: int m_privateMember; };
Practical case: accessing hidden data
Friend functions and virtual functions can be used in combination to access hidden data in the inheritance system.
class Shape { public: virtual double getArea() const = 0; }; class Circle : public Shape { public: Circle(double radius) : m_radius(radius) {} double getArea() const override { return M_PI * m_radius * m_radius; } private: double m_radius; }; class Rectangle : public Shape { public: Rectangle(double width, double height) : m_width(width), m_height(height) {} double getArea() const override { return m_width * m_height; } private: double m_width, m_height; }; // 友元函數(shù),可訪問派生類的私有成員以計(jì)算體積 template <typename T> friend double getVolume(const T& shape) { return shape.getArea() * 2; } int main() { Circle circle(5); Rectangle rectangle(3, 4); std::cout << "Circle area: " << circle.getArea() << "\n"; std::cout << "Rectangle area: " << rectangle.getArea() << "\n"; std::cout << "Circle volume: " << getVolume(circle) << "\n"; std::cout << "Rectangle volume: " << getVolume(rectangle) << "\n"; }
The above is the detailed content of Interaction between C++ friend functions and virtual functions. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The main difference between Java and other programming languages ??is its cross-platform feature of "writing at once, running everywhere". 1. The syntax of Java is close to C, but it removes pointer operations that are prone to errors, making it suitable for large enterprise applications. 2. Compared with Python, Java has more advantages in performance and large-scale data processing. The cross-platform advantage of Java stems from the Java virtual machine (JVM), which can run the same bytecode on different platforms, simplifying development and deployment, but be careful to avoid using platform-specific APIs to maintain cross-platformity.

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

Reducing the use of global variables in C can be achieved by: 1. Using encapsulation and singleton patterns to hide data and limit instances; 2. Using dependency injection to pass dependencies; 3. Using local static variables to replace global shared data; 4. Reduce the dependence of global variables through namespace and modular organization of code.

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

In C, the bit field is a structure member that specifies the number of bits, used to save memory and directly manipulate hardware. Example: structMyStruct{inta:2;intb:5;intc:1;}. The advantage of bit domains is memory savings, but there are cross-platform issues, access restrictions and assignments that require caution. Example of usage: structStateMachine{unsignedintpower:1;unsignedintmode:2;unsignedinterror:1;}. Performance recommendations include arranging bit fields by size, avoiding overuse and adequate testing.

The syntax of the trigonometric operator in C is condition?expression1:expression2, which is used to select and execute different expressions according to the condition. 1) Basic usage example: intmax=(x>y)?x:y, used to select the larger value in x and y. 2) Example of nested usage: intresult=(a>0&&b>0)?a b:(a==0||b==0)?a*b:a-b, used to perform different operations according to different conditions. 3) Error handling example: std::stringerrorMessage=(errorCode==0)?"Successful&quo

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The usage of logical non-operator! in C includes: 1) Basic usage: inverse the Boolean value; 2) Conditional judgment: simplify the code, such as checking whether the container is empty; 3) Loop control: processing elements that do not meet the conditions; 4) Function return value processing: determine whether the operation has failed. Pay attention to potential pitfalls such as pointer processing and operator priority when using!, but it can help write more concise and efficient code.
