国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table of Contents
When will reflection be used?
How to start using reflection? Several basic steps
Issues to be aware of when using reflection
Home Java javaTutorial How to use reflection?

How to use reflection?

Jun 25, 2025 pm 02:09 PM

Reflection is used to dynamically operate classes and objects at runtime, and is commonly used in general tool development. Its core steps include obtaining class information, viewing structures, creating instances, calling methods, and accessing private members; when using it, you need to pay attention to performance, security, maintainability and version compatibility issues.

How to use reflection?

Many people know that reflection is useful, but they always feel a little weak when they really use it and don’t know where to start. In fact, the core function of reflection is to allow you to dynamically understand and operate classes, objects, and methods during runtime. To put it simply, it allows you to "see through" the structure of a class, even call its methods or modify its properties, without determining the specific type when writing code.

When will reflection be used?

The most common situation is when you write general tools. For example, if you make a serialization framework, it is impossible to know in advance what kind of class the user is passing in; or if you want to do a dependency injection container, you need to automatically create objects based on configuration; for example, unit testing tools also rely on reflection to discover test methods and execute them.

There are also times when you want to bypass encapsulation, such as accessing private fields or methods (although this is done with caution). In short, reflection comes in handy when you need to deal with uncertain types but want to handle logic uniformly .

How to start using reflection? Several basic steps

The reflection mechanisms of different languages ??are slightly different. Here we take mainstream static languages ??such as Java and C# as examples to talk about a few key points:

  • Get class information : for example, in Java, use Class> clazz = obj.getClass(); or Class.forName("完整類名") .
  • Check the structure of the class : you can obtain the class's methods, fields, constructors and other information through reflection, such as clazz.getMethods() .
  • Dynamically create instances and call methods : for example, create an object with clazz.newInstance() , and then call the method through method.invoke(obj, args) .
  • Accessing private members : Setting setAccessible(true) can skip access permission restrictions, but it is not recommended to abuse it.

Note that reflection performance is usually not as good as direct calls, so try to use as little as possible in areas that are sensitive to performance, or cache them well.

Issues to be aware of when using reflection

Although the reflection is good, there are several pits that are easy to tread:

  • Performance issues : Each time you call the reflection method is much slower than direct calls, especially when you call it frequently. If you have to use it, it is best to cache the reflected results.
  • Security Limitations : Some environments (such as Android's ART or some JVM security policies) restrict reflection operations, especially when accessing private members.
  • Poor readability and maintenance : Reflective code is often not intuitive enough, and it may not be easy to understand when others take over your code.
  • Version compatibility issues : Reflective behavior may change after some JDK versions are updated, especially the higher version of JDK has imposed stricter restrictions on methods such as getDeclaredMethods() .

If you just want to make simple dynamic calls, you can consider combining annotation reflection methods, which can not only keep the code clear but also achieve flexible control.


Basically that's it. Reflection is not something you need to use every day, but it is indeed one of the important tools for building advanced features. Mastering it will allow you to write more general and flexible code.

The above is the detailed content of How to use reflection?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1502
276
Asynchronous Programming Techniques in Modern Java Asynchronous Programming Techniques in Modern Java Jul 07, 2025 am 02:24 AM

Java supports asynchronous programming including the use of CompletableFuture, responsive streams (such as ProjectReactor), and virtual threads in Java19. 1.CompletableFuture improves code readability and maintenance through chain calls, and supports task orchestration and exception handling; 2. ProjectReactor provides Mono and Flux types to implement responsive programming, with backpressure mechanism and rich operators; 3. Virtual threads reduce concurrency costs, are suitable for I/O-intensive tasks, and are lighter and easier to expand than traditional platform threads. Each method has applicable scenarios, and appropriate tools should be selected according to your needs and mixed models should be avoided to maintain simplicity

Best Practices for Using Enums in Java Best Practices for Using Enums in Java Jul 07, 2025 am 02:35 AM

In Java, enums are suitable for representing fixed constant sets. Best practices include: 1. Use enum to represent fixed state or options to improve type safety and readability; 2. Add properties and methods to enums to enhance flexibility, such as defining fields, constructors, helper methods, etc.; 3. Use EnumMap and EnumSet to improve performance and type safety because they are more efficient based on arrays; 4. Avoid abuse of enums, such as dynamic values, frequent changes or complex logic scenarios, which should be replaced by other methods. Correct use of enum can improve code quality and reduce errors, but you need to pay attention to its applicable boundaries.

Understanding Java NIO and Its Advantages Understanding Java NIO and Its Advantages Jul 08, 2025 am 02:55 AM

JavaNIO is a new IOAPI introduced by Java 1.4. 1) is aimed at buffers and channels, 2) contains Buffer, Channel and Selector core components, 3) supports non-blocking mode, and 4) handles concurrent connections more efficiently than traditional IO. Its advantages are reflected in: 1) Non-blocking IO reduces thread overhead, 2) Buffer improves data transmission efficiency, 3) Selector realizes multiplexing, and 4) Memory mapping speeds up file reading and writing. Note when using: 1) The flip/clear operation of the Buffer is easy to be confused, 2) Incomplete data needs to be processed manually without blocking, 3) Selector registration must be canceled in time, 4) NIO is not suitable for all scenarios.

How does a HashMap work internally in Java? How does a HashMap work internally in Java? Jul 15, 2025 am 03:10 AM

HashMap implements key-value pair storage through hash tables in Java, and its core lies in quickly positioning data locations. 1. First use the hashCode() method of the key to generate a hash value and convert it into an array index through bit operations; 2. Different objects may generate the same hash value, resulting in conflicts. At this time, the node is mounted in the form of a linked list. After JDK8, the linked list is too long (default length 8) and it will be converted to a red and black tree to improve efficiency; 3. When using a custom class as a key, the equals() and hashCode() methods must be rewritten; 4. HashMap dynamically expands capacity. When the number of elements exceeds the capacity and multiplies by the load factor (default 0.75), expand and rehash; 5. HashMap is not thread-safe, and Concu should be used in multithreaded

Effective Use of Java Enums and Best Practices Effective Use of Java Enums and Best Practices Jul 07, 2025 am 02:43 AM

Java enumerations not only represent constants, but can also encapsulate behavior, carry data, and implement interfaces. 1. Enumeration is a class used to define fixed instances, such as week and state, which is safer than strings or integers; 2. It can carry data and methods, such as passing values ??through constructors and providing access methods; 3. It can use switch to handle different logics, with clear structure; 4. It can implement interfaces or abstract methods to make differentiated behaviors of different enumeration values; 5. Pay attention to avoid abuse, hard-code comparison, dependence on ordinal values, and reasonably naming and serialization.

What is a Singleton design pattern in Java? What is a Singleton design pattern in Java? Jul 09, 2025 am 01:32 AM

Singleton design pattern in Java ensures that a class has only one instance and provides a global access point through private constructors and static methods, which is suitable for controlling access to shared resources. Implementation methods include: 1. Lazy loading, that is, the instance is created only when the first request is requested, which is suitable for situations where resource consumption is high and not necessarily required; 2. Thread-safe processing, ensuring that only one instance is created in a multi-threaded environment through synchronization methods or double check locking, and reducing performance impact; 3. Hungry loading, which directly initializes the instance during class loading, is suitable for lightweight objects or scenarios that can be initialized in advance; 4. Enumeration implementation, using Java enumeration to naturally support serialization, thread safety and prevent reflective attacks, is a recommended concise and reliable method. Different implementation methods can be selected according to specific needs

Java Optional example Java Optional example Jul 12, 2025 am 02:55 AM

Optional can clearly express intentions and reduce code noise for null judgments. 1. Optional.ofNullable is a common way to deal with null objects. For example, when taking values ??from maps, orElse can be used to provide default values, so that the logic is clearer and concise; 2. Use chain calls maps to achieve nested values ??to safely avoid NPE, and automatically terminate if any link is null and return the default value; 3. Filter can be used for conditional filtering, and subsequent operations will continue to be performed only if the conditions are met, otherwise it will jump directly to orElse, which is suitable for lightweight business judgment; 4. It is not recommended to overuse Optional, such as basic types or simple logic, which will increase complexity, and some scenarios will directly return to nu.

How to fix java.io.NotSerializableException? How to fix java.io.NotSerializableException? Jul 12, 2025 am 03:07 AM

The core workaround for encountering java.io.NotSerializableException is to ensure that all classes that need to be serialized implement the Serializable interface and check the serialization support of nested objects. 1. Add implementsSerializable to the main class; 2. Ensure that the corresponding classes of custom fields in the class also implement Serializable; 3. Use transient to mark fields that do not need to be serialized; 4. Check the non-serialized types in collections or nested objects; 5. Check which class does not implement the interface; 6. Consider replacement design for classes that cannot be modified, such as saving key data or using serializable intermediate structures; 7. Consider modifying

See all articles