国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table of Contents
Using Auxiliary Stack
Steps
Example
Using Recursion
Using Temporary Variable
Using a Queue
Output
Home Java javaTutorial Java Program to insert an element at the Bottom of a Stack

Java Program to insert an element at the Bottom of a Stack

Feb 07, 2025 am 11:59 AM
java

A stack is a data structure that follows the LIFO (Last In, First Out) principle. In other words, The last element we add to a stack is the first one to be removed. When we add (or push) elements to a stack, they are placed on top; i.e. above all the previously-added elements.

There may be certain scenarios where we need to add an element at the bottom of the stack. There are multiple ways to add an element to the bottom of the stack. they are ?

  • Using Auxiliary Stack
  • Using Recursion
  • Using temporary variable
  • Using a Queue

Using Auxiliary Stack

We can insert an element at the bottom of a stack using an auxiliary stack (a secondary stack using which we will perform operations) in Java. Here, we will use two stacks (a main stack and an auxiliary stack) to insert an element at the bottom of the main stack.

The main stack will have the original elements, while the auxiliary stack will help us to rearrange the elements. This method is easy to understand.

Steps

Following are the steps to insert an element at the bottom of a stack using an auxiliary stack:

  • Initialize Two Stacks: Create a main stack push some elements in it and then create an auxiliary stack.
  • Pop All Elements:?Then remove all elements from the main stack and push them into the second auxiliary stack. This will help us to reverse the order of elements.
  • Push the New Element: Once the main stack is empty, we need to push the new element into the main stack or you can also push the element on top of the auxiliary stack if you want.
  • Restore the Original Order: Pop all elements from the auxiliary stack and push them back into the main stack. This will restore the original order of elements.

Example

Following is an example of how we can use an auxiliary stack to add an element at the bottom ?

import java.util.Stack;
public class InsertAtBottomUsingTwoStacks {    
   public static void insertElementAtBottom(Stack<Integer> mainStack, int x) {
      // Create an extra auxiliary stack
      Stack<Integer> St2 = new Stack<>();
      
      /* Step 1: Pop all elements from the main stack 
      and push them into the auxiliary stack */
      while (!mainStack.isEmpty()) {
         St2.push(mainStack.pop());
      }

      // Step 2: Push the new element into the main stack
      mainStack.push(x);

      /* Step 3: Restore the original order by popping each 
      element from the auxiliary stack and push back to main stack */
      while (!St2.isEmpty()) {
         mainStack.push(St2.pop());
      }
   }
   public static void main(String[] args) {
      Stack<Integer> stack1 = new Stack<>();
      stack1.push(1);
      stack1.push(2);
      stack1.push(3);
      stack1.push(4);

      System.out.println("Original Stack: " + stack1);
      insertElementAtBottom(stack1, 0);
      System.out.println("Stack after inserting 0 at the bottom: " + stack1);
   }
}

In the program above, we start by pushing the elements 1, 2, 3, and 4 into the stack. Then, we transfer these elements to another stack. After that, we insert the target element into the main stack. Finally, we retrieve all the elements back from the auxiliary stack.

Java Program to insert an element at the Bottom of a Stack

Using Recursion

Recursion is one other way to insert an element at the bottom of a stack. In this approach, we will use a recursive function to pop all the elements from our stack until it becomes empty, and once it becomes empty we will insert the new element into the stack, and then push the elements back into the stack.

Steps

Here are the steps to insert an element at the bottom of a stack using recursion:

  • Base Case: Check if the stack is empty. If it is empty, we will push the new element into the stack.
  • Recursive Case: If the stack is not empty, we will pop the top element and call the function recursively.
  • Restore Elements: After we are done with inserting the new element, we need to push the previously popped elements back into the stack.

Example

import java.util.Stack;
public class InsertAtBottomUsingTwoStacks {    
   public static void insertElementAtBottom(Stack<Integer> mainStack, int x) {
      // Create an extra auxiliary stack
      Stack<Integer> St2 = new Stack<>();
      
      /* Step 1: Pop all elements from the main stack 
      and push them into the auxiliary stack */
      while (!mainStack.isEmpty()) {
         St2.push(mainStack.pop());
      }

      // Step 2: Push the new element into the main stack
      mainStack.push(x);

      /* Step 3: Restore the original order by popping each 
      element from the auxiliary stack and push back to main stack */
      while (!St2.isEmpty()) {
         mainStack.push(St2.pop());
      }
   }
   public static void main(String[] args) {
      Stack<Integer> stack1 = new Stack<>();
      stack1.push(1);
      stack1.push(2);
      stack1.push(3);
      stack1.push(4);

      System.out.println("Original Stack: " + stack1);
      insertElementAtBottom(stack1, 0);
      System.out.println("Stack after inserting 0 at the bottom: " + stack1);
   }
}

In the above program, we defined a recursive function that inserts a new element at the bottom of the stack, we then continued to pop the elements from the stack until the stack became empty, then we inserted the new element and after that, we restored the previous elements into the stack.

Using Temporary Variable

We can also achieve the given task using a temporary variable. We use this variable to store the elements while we manipulate the stack. This method is easy and we can implement using a simple loop.

Steps

Following are the steps to insert an element at the bottom of a stack using a temporary variable <

  • Initialize a Temporary Variable: Create a variable to temporarily hold the elements as you iterate through the stack.
  • Transfer Elements: Then use a loop to pop elements from the stack and store those elements in the temporary variable.
  • Insert New Element: Once our stack is empty, then we need to push the new element into the stack.
  • Restore Elements: After inserting the element, push the elements from the temporary variable back into the stack.

Example

import java.util.Stack;
public class InsertAtBottomUsingRecursion {
   public static void insertAtElementBottom(Stack<Integer> st, int x) {
      // Base case: If the stack is empty, push the new element
      if (st.isEmpty()) {
         st.push(x);
         return;
      }
      // Recursive case: Pop the top element
      int top = st.pop();
      
      // Call the function recursively
      insertAtElementBottom(st, x);
      
      // Restore the top element into the stack
      st.push(top);
   }
   
   public static void main(String[] args) {
      Stack<Integer> st = new Stack<>();
      st.push(1);
      st.push(2);
      st.push(3);
      st.push(4);
   
      System.out.println("Original Stack: " + st);
      insertAtElementBottom(st, 0);
      System.out.println("Stack after inserting 0 at the bottom: " + st);
   }
}

In this program, we used a temporary array to hold the elements while manipulating the stack. We then insert the new element into the stack and restore the original elements into the stack.

Using a Queue

In this approach, we will use a queue to hold the elements temporarily while inserting a new element at the bottom of the stack. This method is the better way to manage the order of elements. Using a Queue we can a new element to a stack without tampering with the existing elements.

Steps

Following are the steps to insert an element at the bottom of a stack using a queue ?

  • Initialize a Queue: Create a queue to hold the elements from the stack.
  • Transfer Elements: Pop the elements from the stack and enqueue them into the queue.
  • Insert New Element: Push the new element into the stack.
  • Restore Elements: Dequeue the elements from the queue and push them back into the stack.

Example

import java.util.Stack;
public class InsertAtBottomUsingTempVar {
public static void insertAtElementBottom(Stack<Integer> st, int x) {
   // Temporary variable to hold elements
   int[] temp = new int[st.size()];
   int index = 0;

   // Transfer elements to temporary variable
   while (!st.isEmpty()) {
      temp[index++] = st.pop();
   }

   // Push the new element into the stack
   st.push(x);

   // Restore elements from temporary variable
   for (int i = 0; i < index; i++) {
      st.push(temp[i]);
   }
}
public static void main(String[] args) {
   Stack<Integer> st = new Stack<>();
   st.push(1);
   st.push(2);
   st.push(3);
   st.push(4);

   System.out.println("Original Stack: " + st);
   insertAtElementBottom(st, 0);
   System.out.println("Stack after inserting 0 at the bottom: " + st);
}
}

Output

Following is the output of the above code ?

import java.util.Stack;
public class InsertAtBottomUsingTwoStacks {    
   public static void insertElementAtBottom(Stack<Integer> mainStack, int x) {
      // Create an extra auxiliary stack
      Stack<Integer> St2 = new Stack<>();
      
      /* Step 1: Pop all elements from the main stack 
      and push them into the auxiliary stack */
      while (!mainStack.isEmpty()) {
         St2.push(mainStack.pop());
      }

      // Step 2: Push the new element into the main stack
      mainStack.push(x);

      /* Step 3: Restore the original order by popping each 
      element from the auxiliary stack and push back to main stack */
      while (!St2.isEmpty()) {
         mainStack.push(St2.pop());
      }
   }
   public static void main(String[] args) {
      Stack<Integer> stack1 = new Stack<>();
      stack1.push(1);
      stack1.push(2);
      stack1.push(3);
      stack1.push(4);

      System.out.println("Original Stack: " + stack1);
      insertElementAtBottom(stack1, 0);
      System.out.println("Stack after inserting 0 at the bottom: " + stack1);
   }
}

In this implementation, we used a queue to hold the elements for a temporary time. We first transfer the existing elements from the stack to the queue. Then, we push the new element into the stack and restore the original elements from the queue back to the stack

Note: We can use other data structures such as Array, LinkedList, ArrayList, etc. instead of a queue.

The above is the detailed content of Java Program to insert an element at the Bottom of a Stack. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to iterate over a Map in Java? How to iterate over a Map in Java? Jul 13, 2025 am 02:54 AM

There are three common methods to traverse Map in Java: 1. Use entrySet to obtain keys and values at the same time, which is suitable for most scenarios; 2. Use keySet or values to traverse keys or values respectively; 3. Use Java8's forEach to simplify the code structure. entrySet returns a Set set containing all key-value pairs, and each loop gets the Map.Entry object, suitable for frequent access to keys and values; if only keys or values are required, you can call keySet() or values() respectively, or you can get the value through map.get(key) when traversing the keys; Java 8 can use forEach((key,value)-&gt

Comparable vs Comparator in Java Comparable vs Comparator in Java Jul 13, 2025 am 02:31 AM

In Java, Comparable is used to define default sorting rules internally, and Comparator is used to define multiple sorting logic externally. 1.Comparable is an interface implemented by the class itself. It defines the natural order by rewriting the compareTo() method. It is suitable for classes with fixed and most commonly used sorting methods, such as String or Integer. 2. Comparator is an externally defined functional interface, implemented through the compare() method, suitable for situations where multiple sorting methods are required for the same class, the class source code cannot be modified, or the sorting logic is often changed. The difference between the two is that Comparable can only define a sorting logic and needs to modify the class itself, while Compar

How to handle character encoding issues in Java? How to handle character encoding issues in Java? Jul 13, 2025 am 02:46 AM

To deal with character encoding problems in Java, the key is to clearly specify the encoding used at each step. 1. Always specify encoding when reading and writing text, use InputStreamReader and OutputStreamWriter and pass in an explicit character set to avoid relying on system default encoding. 2. Make sure both ends are consistent when processing strings on the network boundary, set the correct Content-Type header and explicitly specify the encoding with the library. 3. Use String.getBytes() and newString(byte[]) with caution, and always manually specify StandardCharsets.UTF_8 to avoid data corruption caused by platform differences. In short, by

Using std::chrono in C Using std::chrono in C Jul 15, 2025 am 01:30 AM

std::chrono is used in C to process time, including obtaining the current time, measuring execution time, operation time point and duration, and formatting analysis time. 1. Use std::chrono::system_clock::now() to obtain the current time, which can be converted into a readable string, but the system clock may not be monotonous; 2. Use std::chrono::steady_clock to measure the execution time to ensure monotony, and convert it into milliseconds, seconds and other units through duration_cast; 3. Time point (time_point) and duration (duration) can be interoperable, but attention should be paid to unit compatibility and clock epoch (epoch)

How does a HashMap work internally in Java? How does a HashMap work internally in Java? Jul 15, 2025 am 03:10 AM

HashMap implements key-value pair storage through hash tables in Java, and its core lies in quickly positioning data locations. 1. First use the hashCode() method of the key to generate a hash value and convert it into an array index through bit operations; 2. Different objects may generate the same hash value, resulting in conflicts. At this time, the node is mounted in the form of a linked list. After JDK8, the linked list is too long (default length 8) and it will be converted to a red and black tree to improve efficiency; 3. When using a custom class as a key, the equals() and hashCode() methods must be rewritten; 4. HashMap dynamically expands capacity. When the number of elements exceeds the capacity and multiplies by the load factor (default 0.75), expand and rehash; 5. HashMap is not thread-safe, and Concu should be used in multithreaded

JavaScript Data Types: Primitive vs Reference JavaScript Data Types: Primitive vs Reference Jul 13, 2025 am 02:43 AM

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

What is the 'static' keyword in Java? What is the 'static' keyword in Java? Jul 13, 2025 am 02:51 AM

InJava,thestatickeywordmeansamemberbelongstotheclassitself,nottoinstances.Staticvariablesaresharedacrossallinstancesandaccessedwithoutobjectcreation,usefulforglobaltrackingorconstants.Staticmethodsoperateattheclasslevel,cannotaccessnon-staticmembers,

What is a ReentrantLock in Java? What is a ReentrantLock in Java? Jul 13, 2025 am 02:14 AM

ReentrantLock provides more flexible thread control in Java than synchronized. 1. It supports non-blocking acquisition locks (tryLock()), lock acquisition with timeout (tryLock(longtimeout, TimeUnitunit)) and interruptible wait locks; 2. Allows fair locks to avoid thread hunger; 3. Supports multiple condition variables to achieve a more refined wait/notification mechanism; 4. Need to manually release the lock, unlock() must be called in finally blocks to avoid resource leakage; 5. It is suitable for scenarios that require advanced synchronization control, such as custom synchronization tools or complex concurrent structures, but synchro is still recommended for simple mutual exclusion requirements.

See all articles