国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Java javaTutorial Springboard to functions beyond recursive primitive? Implementation for the Ackermann Peter function

Springboard to functions beyond recursive primitive? Implementation for the Ackermann Peter function

Jan 18, 2025 pm 08:09 PM

Trampolim para fun??es além do primitivo recursivo? Implementa??o para a fun??o de Ackermann Peter

When exploring the springboard technique, I initially used it in simpler situations, with just one recursion – probably a proper subset of primitive recursive functions. However, the need arose to perform an extremely long calculation at work. My first idea was the busy beaver function, but, in addition to its high computational complexity, I was not familiar enough. I then opted for a better-known function: the Ackermann-Peter function.

The Ackermann-Peter Function

This is an easy-to-understand function that takes two integer arguments as input:

int ackermannPeter(int m, int n) {
    if (m == 0) {
        return n + 1;
    } else if (n == 0) {
        return ackermannPeter(m - 1, 1);
    }
    return ackermannPeter(m - 1, ackermannPeter(m, n - 1));
}

For more details, see the Wikipedia page or WolframAlpha.

Using the Function

When testing ackermannPeter(3, 3), the result was calculated correctly. However, when executing ackermannPeter(4, 3), a stack explosion occurred. The depth of recursive calls to the Ackermann-Peter function is very large; simply changing the first argument from 3 to 4 made the output, which was 61, become 2 265536?32^{2^{65536}} - 3.

Overcoming Stack Limit

The problem lies in the intense recursion of the Ackermann-Peter function, which quickly exhausts the stack. The solution is to use continuations to avoid overloading the stack, implementing the springboard idea.

A step on the trampoline needs three behaviors:

  • Indicate whether computation is over.
  • Return the calculated value.
  • Execute one step and get the next continuation.

For our case (integer return):

interface Continuation {
    boolean finished();
    int value();
    Continuation step();

    static Continuation found(int v) { /* ... */ }
    static Continuation goon(Supplier<Continuation> nextStep) { /* ... */ }
}

The trampoline itself:

static int compute(Continuation c) {
    while (!c.finished()) {
        c = c.step();
    }
    return c.value();
}

Applying to the Ackermann-Peter function: the function is divided into three cases: base case, simple recursion and double recursion. The springboard should control the result of the second recursion. To do this, the second argument becomes a Continuation. If n is already finished, the process continues normally; otherwise, a step is taken in the continuation, generating a new one.

private static Continuation ackermannPeter(int m, Continuation c) {
    if (!c.finished()) {
        return Continuation.goon(() -> {
            final var next = c.step();
            return Continuation.goon(() -> ackermannPeter(m, next));
        });
    }
    int n = c.value();
    if (m == 0) {
        return Continuation.found(n + 1);
    } else if (n == 0) {
        return Continuation.goon(() -> ackermannPeter(m - 1, Continuation.found(1)));
    }
    return Continuation.goon(() ->
        ackermannPeter(m - 1,
            Continuation.goon(() -> ackermannPeter(m, Continuation.found(n - 1)
        )))
    );
}

Adding Memoization

Memoization improves performance. Two situations: 1) the result is already in memory; 2) the next step allows you to infer the current result. Memoization is applied after resolving the continuation of the second argument. The implementation with memoization using a HashMap and a long key (combining m and n) is presented, demonstrating a significant reduction in the number of recursive calls. The final version removes the global memory dependency, passing HashMap as an argument.

The above is the detailed content of Springboard to functions beyond recursive primitive? Implementation for the Ackermann Peter function. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Difference between HashMap and Hashtable? Difference between HashMap and Hashtable? Jun 24, 2025 pm 09:41 PM

The difference between HashMap and Hashtable is mainly reflected in thread safety, null value support and performance. 1. In terms of thread safety, Hashtable is thread-safe, and its methods are mostly synchronous methods, while HashMap does not perform synchronization processing, which is not thread-safe; 2. In terms of null value support, HashMap allows one null key and multiple null values, while Hashtable does not allow null keys or values, otherwise a NullPointerException will be thrown; 3. In terms of performance, HashMap is more efficient because there is no synchronization mechanism, and Hashtable has a low locking performance for each operation. It is recommended to use ConcurrentHashMap instead.

Why do we need wrapper classes? Why do we need wrapper classes? Jun 28, 2025 am 01:01 AM

Java uses wrapper classes because basic data types cannot directly participate in object-oriented operations, and object forms are often required in actual needs; 1. Collection classes can only store objects, such as Lists use automatic boxing to store numerical values; 2. Generics do not support basic types, and packaging classes must be used as type parameters; 3. Packaging classes can represent null values ??to distinguish unset or missing data; 4. Packaging classes provide practical methods such as string conversion to facilitate data parsing and processing, so in scenarios where these characteristics are needed, packaging classes are indispensable.

How does JIT compiler optimize code? How does JIT compiler optimize code? Jun 24, 2025 pm 10:45 PM

The JIT compiler optimizes code through four methods: method inline, hot spot detection and compilation, type speculation and devirtualization, and redundant operation elimination. 1. Method inline reduces call overhead and inserts frequently called small methods directly into the call; 2. Hot spot detection and high-frequency code execution and centrally optimize it to save resources; 3. Type speculation collects runtime type information to achieve devirtualization calls, improving efficiency; 4. Redundant operations eliminate useless calculations and inspections based on operational data deletion, enhancing performance.

What are static methods in interfaces? What are static methods in interfaces? Jun 24, 2025 pm 10:57 PM

StaticmethodsininterfaceswereintroducedinJava8toallowutilityfunctionswithintheinterfaceitself.BeforeJava8,suchfunctionsrequiredseparatehelperclasses,leadingtodisorganizedcode.Now,staticmethodsprovidethreekeybenefits:1)theyenableutilitymethodsdirectly

What is an instance initializer block? What is an instance initializer block? Jun 25, 2025 pm 12:21 PM

Instance initialization blocks are used in Java to run initialization logic when creating objects, which are executed before the constructor. It is suitable for scenarios where multiple constructors share initialization code, complex field initialization, or anonymous class initialization scenarios. Unlike static initialization blocks, it is executed every time it is instantiated, while static initialization blocks only run once when the class is loaded.

What is the `final` keyword for variables? What is the `final` keyword for variables? Jun 24, 2025 pm 07:29 PM

InJava,thefinalkeywordpreventsavariable’svaluefrombeingchangedafterassignment,butitsbehaviordiffersforprimitivesandobjectreferences.Forprimitivevariables,finalmakesthevalueconstant,asinfinalintMAX_SPEED=100;wherereassignmentcausesanerror.Forobjectref

What is the Factory pattern? What is the Factory pattern? Jun 24, 2025 pm 11:29 PM

Factory mode is used to encapsulate object creation logic, making the code more flexible, easy to maintain, and loosely coupled. The core answer is: by centrally managing object creation logic, hiding implementation details, and supporting the creation of multiple related objects. The specific description is as follows: the factory mode handes object creation to a special factory class or method for processing, avoiding the use of newClass() directly; it is suitable for scenarios where multiple types of related objects are created, creation logic may change, and implementation details need to be hidden; for example, in the payment processor, Stripe, PayPal and other instances are created through factories; its implementation includes the object returned by the factory class based on input parameters, and all objects realize a common interface; common variants include simple factories, factory methods and abstract factories, which are suitable for different complexities.

What is type casting? What is type casting? Jun 24, 2025 pm 11:09 PM

There are two types of conversion: implicit and explicit. 1. Implicit conversion occurs automatically, such as converting int to double; 2. Explicit conversion requires manual operation, such as using (int)myDouble. A case where type conversion is required includes processing user input, mathematical operations, or passing different types of values ??between functions. Issues that need to be noted are: turning floating-point numbers into integers will truncate the fractional part, turning large types into small types may lead to data loss, and some languages ??do not allow direct conversion of specific types. A proper understanding of language conversion rules helps avoid errors.

See all articles