国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Python Tutorial Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions

Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions

Oct 26, 2024 am 05:42 AM

Table of Contents

  1. About
  2. Tools Used
  3. Solution Architecture Diagram
  4. Deployment Process
    • Prerequisites
    • Secrets for GitHub Actions
    • To create a new secret:
    • Setting Up the DevOps Service Account
  5. GitHub Actions Pipeline: Steps
    • enable-services
    • deploy-buckets
    • deploy-cloud-function
    • deploy-composer-service-account
    • deploy-bigquery-dataset-bigquery-tables
    • deploy-composer-environment
    • deploy-composer-http-connection
    • deploy-dags
  6. GitHub Actions Workflow Explanation
  7. Resources Created After Deployment
  8. Conclusion
  9. References

About

This post explores the use of Google Cloud Functions for processing data in a three-tier architecture. The solution is orchestrated with Google Composer and features automated deployments using GitHub Actions. We will walk through the tools used, deployment process, and pipeline steps, providing a clear guide for building an end-to-end cloud-based data pipeline.

Tools Used

  1. Google Cloud Platform (GCP): The primary cloud environment.
  2. Cloud Storage: For storing input and processed data across different layers (Bronze, Silver, Gold).
  3. Cloud Functions: Serverless functions responsible for data processing in each tier.
  4. Google Composer: An orchestration tool based on Apache Airflow, used to schedule and manage workflows.
  5. GitHub Actions: Automation tool for deploying and managing the pipeline infrastructure.

Solution Architecture Diagram

Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions

Deployment Process

Prerequisites

Before setting up the project, ensure you have the following:

  1. GCP Account: A Google Cloud account with billing enabled.
  2. Service Account for DevOps: A service account with the required permissions to deploy resources in GCP.
  3. Secrets in GitHub: Store the GCP service account credentials, project ID, and bucket name as secrets in GitHub for secure access.

Secrets for GitHub Actions

To securely access your GCP project and resources, set the following secrets in GitHub Actions:

  • BUCKET_DATALAKE: Your Cloud Storage bucket for the data lake.
  • GCP_DEVOPS_SA_KEY: The service account key in JSON format.
  • PROJECT_ID: Your GCP project ID.
  • REGION_PROJECT_ID: The region where your GCP project is deployed.

To create a new secret:

1. In project repository, menu **Settings** 
2. **Security**, 
3. **Secrets and variables**,click in access **Action**
4. **New repository secret**, type a **name** and **value** for secret.

Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions

For more details , access :
https://docs.github.com/pt/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions

Setting Up the DevOps Service Account

Create a service account in GCP with permissions for Cloud Functions, Composer, BigQuery, and Cloud Storage. Grant the necessary roles such as:

  • Cloud Functions Admin
  • Composer User
  • BigQuery Data Editor
  • Storage Object Admin

GitHub Actions Pipeline: Steps

The pipeline automates the entire deployment process, ensuring all components are set up correctly. Here's a breakdown of the key jobs from the GitHub Actions file, each responsible for a different aspect of the deployment.

enable-services

enable-services:
    runs-on: ubuntu-22.04
    steps:
    - uses: actions/checkout@v2

    # Step to Authenticate with GCP
    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Configure  Cloud SDK
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    - name: Set up python 3.8
      uses: actions/setup-python@v2
      with:
        python-version: 3.8.16

    # Step to Create GCP Bucket 
    - name: Enable gcp service api's
      run: |-
        gcloud services enable ${{ env.GCP_SERVICE_API_0 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_1 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_2 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_3 }}
        gcloud services enable ${{ env.GCP_SERVICE_API_4 }}

deploy-buckets

deploy-buckets:
    needs: [enable-services]
    runs-on: ubuntu-22.04
    timeout-minutes: 10

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    # Step to Create GCP Bucket 
    - name: Create Google Cloud Storage - datalake
      run: |-
        if ! gsutil ls -p ${{ secrets.PROJECT_ID }} gs://${{ secrets.BUCKET_DATALAKE }} &> /dev/null; \
          then \
            gcloud storage buckets create gs://${{ secrets.BUCKET_DATALAKE }} --default-storage-class=nearline --location=${{ env.REGION }}
          else
            echo "Cloud Storage : gs://${{ secrets.BUCKET_DATALAKE }}  already exists" ! 
          fi


    # Step to Upload the file to GCP Bucket - transient files
    - name: Upload transient files to Google Cloud Storage
      run: |-
        TARGET=${{ env.INPUT_FOLDER }}
        BUCKET_PATH=${{ secrets.BUCKET_DATALAKE }}/${{ env.INPUT_FOLDER }}    
        gsutil cp -r $TARGET gs://${BUCKET_PATH}

deploy-cloud-function

deploy-cloud-function:
    needs: [enable-services, deploy-buckets]
    runs-on: ubuntu-22.04
    steps:
    - uses: actions/checkout@v2

    # Step to Authenticate with GCP
    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Configure  Cloud SDK
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    - name: Set up python 3.10
      uses: actions/setup-python@v2
      with:
        python-version: 3.10.12
    #cloud_function_scripts/csv_to_parquet
    - name: Create cloud function - ${{ env.CLOUD_FUNCTION_1_NAME }}
      run: |-
        cd ${{ env.FUNCTION_SCRIPTS }}/${{ env.CLOUD_FUNCTION_1_NAME }}
        gcloud functions deploy ${{ env.CLOUD_FUNCTION_1_NAME }} \
        --gen2 \
        --cpu=${{ env.FUNCTION_CPU  }} \
        --memory=${{ env.FUNCTION_MEMORY  }} \
        --runtime ${{ env.PYTHON_FUNCTION_RUNTIME }} \
        --trigger-http \
        --region ${{ env.REGION }} \
        --entry-point ${{ env.CLOUD_FUNCTION_1_NAME }}

    - name: Create cloud function - ${{ env.CLOUD_FUNCTION_2_NAME }}
      run: |-
        cd ${{ env.FUNCTION_SCRIPTS }}/${{ env.CLOUD_FUNCTION_2_NAME }}
        gcloud functions deploy ${{ env.CLOUD_FUNCTION_2_NAME }} \
        --gen2 \
        --cpu=${{ env.FUNCTION_CPU  }} \
        --memory=${{ env.FUNCTION_MEMORY  }} \
        --runtime ${{ env.PYTHON_FUNCTION_RUNTIME }} \
        --trigger-http \
        --region ${{ env.REGION }} \
        --entry-point ${{ env.CLOUD_FUNCTION_2_NAME }}

    - name: Create cloud function - ${{ env.CLOUD_FUNCTION_3_NAME }}
      run: |-
        cd ${{ env.FUNCTION_SCRIPTS }}/${{ env.CLOUD_FUNCTION_3_NAME }}
        gcloud functions deploy ${{ env.CLOUD_FUNCTION_3_NAME }} \
        --gen2 \
        --cpu=${{ env.FUNCTION_CPU  }} \
        --memory=${{ env.FUNCTION_MEMORY  }} \
        --runtime ${{ env.PYTHON_FUNCTION_RUNTIME }} \
        --trigger-http \
        --region ${{ env.REGION }} \
        --entry-point ${{ env.CLOUD_FUNCTION_3_NAME }}

deploy-composer-service-account

deploy-composer-service-account:
    needs: [enable-services, deploy-buckets, deploy-cloud-function ]
    runs-on: ubuntu-22.04
    timeout-minutes: 10

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker


    - name: Create service account
      run: |-

        if ! gcloud iam service-accounts list | grep -i ${{ env.SERVICE_ACCOUNT_NAME}} &> /dev/null; \
          then \
            gcloud iam service-accounts create ${{ env.SERVICE_ACCOUNT_NAME }} \
            --display-name=${{ env.SERVICE_ACCOUNT_DESCRIPTION }}
          fi
    - name: Add permissions to service account
      run: |-
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/composer.user"

        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/storage.objectAdmin"

        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        # Permiss?o para criar e gerenciar ambientes Composer
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/composer.admin"

        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/composer.worker"

        # Permiss?o para criar e configurar instancias e recursos na VPC
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/compute.networkAdmin"

        # Permiss?o para interagir com o Cloud Storage, necessário para buckets e logs
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/storage.admin"

        # Permiss?o para criar e gerenciar recursos no projeto, como buckets e instancias
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/editor"

        # Permiss?o para acessar e usar recursos necessários para o IAM
        gcloud projects add-iam-policy-binding ${{secrets.PROJECT_ID}} \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/iam.serviceAccountUser"

        gcloud functions add-iam-policy-binding ${{env.CLOUD_FUNCTION_1_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_1_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" 

        gcloud functions add-iam-policy-binding ${{env.CLOUD_FUNCTION_2_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_2_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com"     

        gcloud functions add-iam-policy-binding ${{env.CLOUD_FUNCTION_3_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
          --role="roles/cloudfunctions.invoker"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_3_NAME}} \
          --region="${{env.REGION}}" \
          --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com"   

        SERVICE_NAME_1=$(gcloud functions describe ${{ env.CLOUD_FUNCTION_1_NAME }} --region=${{ env.REGION }} --format="value(serviceConfig.service)")
        gcloud run services add-iam-policy-binding $SERVICE_NAME_1 \
        --region="${{env.REGION}}" \
        --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
        --role="roles/run.invoker"

        SERVICE_NAME_2=$(gcloud functions describe ${{ env.CLOUD_FUNCTION_2_NAME }} --region=${{ env.REGION }} --format="value(serviceConfig.service)")
        gcloud run services add-iam-policy-binding $SERVICE_NAME_2 \
        --region="${{env.REGION}}" \
        --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
        --role="roles/run.invoker"

        SERVICE_NAME_3=$(gcloud functions describe ${{ env.CLOUD_FUNCTION_3_NAME }} --region=${{ env.REGION }} --format="value(serviceConfig.service)")
        gcloud run services add-iam-policy-binding $SERVICE_NAME_3 \
        --region="${{env.REGION}}" \
        --member="serviceAccount:${{env.SERVICE_ACCOUNT_NAME}}@${{secrets.PROJECT_ID}}.iam.gserviceaccount.com" \
        --role="roles/run.invoker"


        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_1_NAME}} \
        --region="${{env.REGION}}" \
        --member="allUsers"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_2_NAME}} \
        --region="${{env.REGION}}" \
        --member="allUsers"

        gcloud functions add-invoker-policy-binding ${{env.CLOUD_FUNCTION_3_NAME}} \
        --region="${{env.REGION}}" \
        --member="allUsers"

deploy-bigquery-dataset-bigquery-tables

deploy-bigquery-dataset-bigquery-tables:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account ]
    runs-on: ubuntu-22.04
    timeout-minutes: 10

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker


    - name: Create Big Query Dataset
      run: |-  
        if ! bq ls --project_id ${{ secrets.PROJECT_ID}} -a | grep -w ${{ env.BIGQUERY_DATASET}} &> /dev/null; \
          then 

            bq --location=${{ env.REGION }} mk \
          --default_table_expiration 0 \
          --dataset ${{ env.BIGQUERY_DATASET }}

          else
            echo "Big Query Dataset : ${{ env.BIGQUERY_DATASET }} already exists" ! 
          fi

    - name: Create Big Query table
      run: |-
        TABLE_NAME_CUSTOMER=${{ env.BIGQUERY_DATASET}}.${{ env.BIGQUERY_TABLE_CUSTOMER}}
        c=0
        for table in $(bq ls --max_results 1000 "${{ secrets.PROJECT_ID}}:${{ env.BIGQUERY_DATASET}}" | tail -n +3 | awk '{print }'); do

            # Determine the table type and file extension
            if bq show --format=prettyjson $BIGQUERY_TABLE_CUSTOMER | jq -r '.type' | grep -q -E "TABLE"; then
              echo "Dataset ${{ env.BIGQUERY_DATASET}} already has table named : $table " !
              if [ "$table" == "${{ env.BIGQUERY_TABLE_CUSTOMER}}" ]; then
                echo "Dataset ${{ env.BIGQUERY_DATASET}} already has table named : $table " !
                ((c=c+1))       
              fi                  
            else
                echo "Ignoring $table"            
                continue
            fi
        done
        echo " contador $c "
        if [ $c == 0 ]; then
          echo "Creating table named : $table for Dataset ${{ env.BIGQUERY_DATASET}} " !

          bq mk --table \
          $TABLE_NAME_CUSTOMER \
          ./big_query_schemas/customer_schema.json


        fi

deploy-composer-environment

deploy-composer-environment:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account, deploy-bigquery-dataset-bigquery-tables ]
    runs-on: ubuntu-22.04
    timeout-minutes: 40

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    # Create composer environments
    - name: Create composer environments
      run: |-
        if ! gcloud composer environments list --project=${{ secrets.PROJECT_ID }} --locations=${{ env.REGION }} | grep -i ${{ env.COMPOSER_ENV_NAME }} &> /dev/null; then
            gcloud composer environments create ${{ env.COMPOSER_ENV_NAME }} \
                --project ${{ secrets.PROJECT_ID }} \
                --location ${{ env.REGION }} \
                --environment-size ${{ env.COMPOSER_ENV_SIZE }} \
                --image-version ${{ env.COMPOSER_IMAGE_VERSION }} \
                --service-account ${{ env.SERVICE_ACCOUNT_NAME }}@${{ secrets.PROJECT_ID }}.iam.gserviceaccount.com
        else
            echo "Composer environment ${{ env.COMPOSER_ENV_NAME }} already exists!"
        fi

    # Create composer environments
    - name: Create composer variable PROJECT_ID 
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION}} variables \
        -- set PROJECT_ID ${{ secrets.PROJECT_ID }}

    - name: Create composer variable REGION
      run: |-  
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
          --location ${{ env.REGION }} variables \
          -- set REGION ${{ env.REGION }}

    - name: Create composer variable CLOUD_FUNCTION_1_NAME
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }}\
          --location ${{ env.REGION }} variables \
          -- set CLOUD_FUNCTION_1_NAME ${{ env.CLOUD_FUNCTION_1_NAME }}

    - name: Create composer variable CLOUD_FUNCTION_2_NAME
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set CLOUD_FUNCTION_2_NAME ${{ env.CLOUD_FUNCTION_2_NAME }}

    - name: Create composer variable CLOUD_FUNCTION_3_NAME
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set CLOUD_FUNCTION_3_NAME ${{ env.CLOUD_FUNCTION_3_NAME }}

    - name: Create composer variable BUCKET_DATALAKE
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION}} variables \
        -- set BUCKET_NAME ${{ secrets.BUCKET_DATALAKE }}

    - name: Create composer variable TRANSIENT_FILE_PATH
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set TRANSIENT_FILE_PATH ${{ env.TRANSIENT_FILE_PATH }}

    - name: Create composer variable BRONZE_PATH 
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set BRONZE_PATH ${{ env.BRONZE_PATH }}

    - name: Create composer variable SILVER_PATH
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set SILVER_PATH ${{ env.SILVER_PATH }}

    - name: Create composer variable REGION_PROJECT_ID
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set REGION_PROJECT_ID "${{ env.REGION }}-${{ secrets.PROJECT_ID }}"


    - name: Create composer variable BIGQUERY_DATASET
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set BIGQUERY_DATASET "${{ env.BIGQUERY_DATASET }}"

    - name: Create composer variable BIGQUERY_TABLE_CUSTOMER
      run: |-
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} variables \
        -- set BIGQUERY_TABLE_CUSTOMER "${{ env.BIGQUERY_TABLE_CUSTOMER }}"

deploy-composer-http-connection

deploy-composer-http-connection:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account, deploy-bigquery-dataset-bigquery-tables, deploy-composer-environment ]
    runs-on: ubuntu-22.04

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    # Step to Configure Docker to use the gcloud command-line tool as a credential helper
    - name: Configure Docker
      run: |-
        gcloud auth configure-docker

    - name: Create composer http connection HTTP_CONNECTION
      run: |-
        HOST="https://${{ env.REGION }}-${{ secrets.PROJECT_ID }}.cloudfunctions.net"
        gcloud composer environments run ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} connections \
        -- add ${{ env.HTTP_CONNECTION }} \
        --conn-type ${{ env.CONNECTION_TYPE  }} \
        --conn-host $HOST

deploy-dags

deploy-dags:
    needs: [enable-services, deploy-buckets, deploy-cloud-function, deploy-composer-service-account, deploy-bigquery-dataset-bigquery-tables, deploy-composer-environment, deploy-composer-http-connection ]
    runs-on: ubuntu-22.04

    steps:
    - name: Checkout
      uses: actions/checkout@v4

    - name: Authorize GCP
      uses: 'google-github-actions/auth@v2'
      with:
        credentials_json:  ${{ secrets.GCP_DEVOPS_SA_KEY }}

    # Step to Authenticate with GCP
    - name: Set up Cloud SDK
      uses: google-github-actions/setup-gcloud@v2
      with:
        version: '>= 363.0.0'
        project_id: ${{ secrets.PROJECT_ID }}

    - name: Get Composer bucket name and Deploy DAG to Composer
      run: |-
        COMPOSER_BUCKET=$(gcloud composer environments describe ${{ env.COMPOSER_ENV_NAME }} \
        --location ${{ env.REGION }} \
        --format="value(config.dagGcsPrefix)")
        gsutil -m cp -r ./dags/* $COMPOSER_BUCKET/dags/


Resources Created After Deployment

After the deployment process is complete, the following resources will be available:

  1. Cloud Storage Buckets: Organized into Bronze, Silver, and Gold layers.
  2. Cloud Functions:: Responsible for processing data across the three layers.
  3. Service Account for Composer:: With appropriate permissions for invoking Cloud Functions.
  4. BigQuery Dataset and Tables: A DataFrame created for storing processed data.
  5. Google Composer Environment: Orchestrates the Cloud Functions with daily executions.
  6. Composer DAG: The DAG manages the workflow that invokes Cloud Functions and processes data.

Conclusion

This solution demonstrates how to leverage Google Cloud Functions, Composer, and BigQuery to create a robust three-tier data processing pipeline. The automation using GitHub Actions ensures a smooth, reproducible deployment process, making it easier to manage cloud-based data pipelines at scale.

References

  1. Google Cloud Platform Documentation: https://cloud.google.com/docs
  2. GitHub Actions Documentation:: https://docs.github.com/en/actions
  3. Google Composer Documentation:: https://cloud.google.com/composer/docs
  4. Cloud Functions Documentation: https://cloud.google.com/functions/docs
  5. GitHub Repo: https://github.com/jader-lima/gcp-cloud-functions-to-bigquery

The above is the detailed content of Using Google Cloud Functions for Three-Tier Data Processing with Google Composer and Automated Deployments via GitHub Actions. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1502
276
How to handle API authentication in Python How to handle API authentication in Python Jul 13, 2025 am 02:22 AM

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

Explain Python assertions. Explain Python assertions. Jul 07, 2025 am 12:14 AM

Assert is an assertion tool used in Python for debugging, and throws an AssertionError when the condition is not met. Its syntax is assert condition plus optional error information, which is suitable for internal logic verification such as parameter checking, status confirmation, etc., but cannot be used for security or user input checking, and should be used in conjunction with clear prompt information. It is only available for auxiliary debugging in the development stage rather than substituting exception handling.

What are Python type hints? What are Python type hints? Jul 07, 2025 am 02:55 AM

TypehintsinPythonsolvetheproblemofambiguityandpotentialbugsindynamicallytypedcodebyallowingdeveloperstospecifyexpectedtypes.Theyenhancereadability,enableearlybugdetection,andimprovetoolingsupport.Typehintsareaddedusingacolon(:)forvariablesandparamete

How to iterate over two lists at once Python How to iterate over two lists at once Python Jul 09, 2025 am 01:13 AM

A common method to traverse two lists simultaneously in Python is to use the zip() function, which will pair multiple lists in order and be the shortest; if the list length is inconsistent, you can use itertools.zip_longest() to be the longest and fill in the missing values; combined with enumerate(), you can get the index at the same time. 1.zip() is concise and practical, suitable for paired data iteration; 2.zip_longest() can fill in the default value when dealing with inconsistent lengths; 3.enumerate(zip()) can obtain indexes during traversal, meeting the needs of a variety of complex scenarios.

What are python iterators? What are python iterators? Jul 08, 2025 am 02:56 AM

InPython,iteratorsareobjectsthatallowloopingthroughcollectionsbyimplementing__iter__()and__next__().1)Iteratorsworkviatheiteratorprotocol,using__iter__()toreturntheiteratorand__next__()toretrievethenextitemuntilStopIterationisraised.2)Aniterable(like

Python FastAPI tutorial Python FastAPI tutorial Jul 12, 2025 am 02:42 AM

To create modern and efficient APIs using Python, FastAPI is recommended; it is based on standard Python type prompts and can automatically generate documents, with excellent performance. After installing FastAPI and ASGI server uvicorn, you can write interface code. By defining routes, writing processing functions, and returning data, APIs can be quickly built. FastAPI supports a variety of HTTP methods and provides automatically generated SwaggerUI and ReDoc documentation systems. URL parameters can be captured through path definition, while query parameters can be implemented by setting default values ??for function parameters. The rational use of Pydantic models can help improve development efficiency and accuracy.

How to test an API with Python How to test an API with Python Jul 12, 2025 am 02:47 AM

To test the API, you need to use Python's Requests library. The steps are to install the library, send requests, verify responses, set timeouts and retry. First, install the library through pipinstallrequests; then use requests.get() or requests.post() and other methods to send GET or POST requests; then check response.status_code and response.json() to ensure that the return result is in compliance with expectations; finally, add timeout parameters to set the timeout time, and combine the retrying library to achieve automatic retry to enhance stability.

Python variable scope in functions Python variable scope in functions Jul 12, 2025 am 02:49 AM

In Python, variables defined inside a function are local variables and are only valid within the function; externally defined are global variables that can be read anywhere. 1. Local variables are destroyed as the function is executed; 2. The function can access global variables but cannot be modified directly, so the global keyword is required; 3. If you want to modify outer function variables in nested functions, you need to use the nonlocal keyword; 4. Variables with the same name do not affect each other in different scopes; 5. Global must be declared when modifying global variables, otherwise UnboundLocalError error will be raised. Understanding these rules helps avoid bugs and write more reliable functions.

See all articles