Foto von Patric Ho
Diese pr?gnante Anleitung ordnet Python-Code-Smells den entsprechenden Design-Pattern-L?sungen zu.
class CodeSmellSolutions: DUPLICATED_CODE = [ "form_template_method", "introduce_polymorphic_creation_with_factory_method", "chain_constructors", "replace_one__many_distinctions_with_composite", "extract_composite", "unify_interfaces_with_adapter", "introduce_null_object", ] LONG_METHOD = [ "compose_method", "move_accumulation_to_collecting_parameter", "replace_conditional_dispatcher_with_command", "move_accumulation_to_visitor", "replace_conditional_logic_with_strategy", ] CONDITIONAL_COMPLEXITY = [ # Complex conditional logic "replace_conditional_logic_with_strategy", "move_emblishment_to_decorator", "replace_state_altering_conditionals_with_state", "introduce_null_object", ] PRIMITIVE_OBSESSION = [ "replace_type_code_with_class", "replace_state_altering_conditionals_with_state", "replace_conditional_logic_with_strategy", "replace_implict_tree_with_composite", "replace_implicit_language_with_interpreter", "move_emblishment_to_decorator", "encapsulate_composite_with_builder", ] INDECENT_EXPOSURE = [ # Lack of information hiding "encapsulate_classes_with_factory" ] SOLUTION_SPRAWL = [ # Scattered logic/responsibility "move_creation_knowledge_to_factory" ] ALTERNATIVE_CLASSES_WITH_DIFFERENT_INTERFACES = [ # Similar classes, different interfaces "unify_interfaces_with_adapter" ] LAZY_CLASS = [ # Insufficient functionality "inline_singleton" ] LARGE_CLASS = [ "replace_conditional_dispatcher_with_command", "replace_state_altering_conditionals_with_state", "replace_implict_tree_with_composite", ] SWITCH_STATEMENTS = [ # Complex switch statements "replace_conditional_dispatcher_with_command", "move_accumulation_to_visitor", ] COMBINATION_EXPLOSION = [ # Similar code for varying data "replace_implicit_language_with_interpreter" ] ODDBALL_SOLUTIONS = [ # Multiple solutions for same problem "unify_interfaces_with_adapter" ]
Refactoring-Beispiele in Python
Dieses Projekt übersetzt Refactoring-Beispiele aus Refactoring to Patterns (Joshua Kerievsky) in Python. Jedes Beispiel zeigt Original- und überarbeiteten Code und hebt Verbesserungen hervor. Der Refactoring-Prozess umfasste die Interpretation von UML-Diagrammen und die Anpassung des Java-Codes an die Nuancen von Python (Verwaltung zyklischer Importe und Schnittstellen).
Beispiel: Compose-Methode
Das ?Compose Method“-Refactoring vereinfacht komplexen Code durch Extrahieren kleinerer, aussagekr?ftigerer Methoden.
# Original (complex) code def add(element): readonly = False size = 0 elements = [] if not readonly: new_size = size + 1 if new_size > len(elements): new_elements = [] for i in range(size): new_elements[i] = elements[i] # Potential IndexError elements = new_elements size += 1 elements[size] = element # Potential IndexError # Refactored (simplified) code def is_at_capacity(new_size, elements): return new_size > len(elements) def grow_array(size, elements): new_elements = [elements[i] for i in range(size)] # List comprehension for clarity return new_elements def add_element(elements, element, size): elements.append(element) # More Pythonic approach return len(elements) -1 def add_refactored(element): readonly = False if readonly: return size = len(elements) new_size = size + 1 if is_at_capacity(new_size, elements): elements = grow_array(size, elements) size = add_element(elements, element, size)
Beispiel: Polymorphismus (Testautomatisierung)
Dieses Beispiel demonstriert Polymorphismus in der Testautomatisierung und abstrahiert den Testaufbau für die Wiederverwendbarkeit.
# Original code (duplicate setup) class TestCase: pass class DOMBuilder: def __init__(self, orders): pass def calc(self): return 42 class XMLBuilder: def __init__(self, orders): pass def calc(self): return 42 class DOMTest(TestCase): def run_dom_test(self): expected = 42 builder = DOMBuilder("orders") assert builder.calc() == expected class XMLTest(TestCase): def run_xml_test(self): expected = 42 builder = XMLBuilder("orders") assert builder.calc() == expected # Refactored code (polymorphic setup) class OutputBuilder: def calc(self): raise NotImplementedError class DOMBuilderRefac(OutputBuilder): def calc(self): return 42 class XMLBuilderRefac(OutputBuilder): def calc(self): return 42 class TestCaseRefac: def create_builder(self): raise NotImplementedError def run_test(self): expected = 42 builder = self.create_builder() assert builder.calc() == expected class DOMTestRefac(TestCaseRefac): def create_builder(self): return DOMBuilderRefac() class XMLTestRefac(TestCaseRefac): def create_builder(self): return XMLBuilderRefac()
Beispiel: Besuchermuster
Das Besuchermuster entkoppelt Klassen von ihren Methoden.
# Original code (conditional logic in TextExtractor) class Node: pass class LinkTag(Node): pass class Tag(Node): pass class StringNode(Node): pass class TextExtractor: def extract_text(self, nodes): result = [] for node in nodes: if isinstance(node, StringNode): result.append("string") elif isinstance(node, LinkTag): result.append("linktag") elif isinstance(node, Tag): result.append("tag") else: result.append("other") return result # Refactored code (using Visitor) class NodeVisitor: def visit_link_tag(self, node): return "linktag" def visit_tag(self, node): return "tag" def visit_string_node(self, node): return "string" class Node: def accept(self, visitor): pass class LinkTagRefac(Node): def accept(self, visitor): return visitor.visit_link_tag(self) class TagRefac(Node): def accept(self, visitor): return visitor.visit_tag(self) class StringNodeRefac(Node): def accept(self, visitor): return visitor.visit_string_node(self) class TextExtractorVisitor(NodeVisitor): def extract_text(self, nodes): result = [node.accept(self) for node in nodes] return result
Fazit
Dieser praktische, praktische Ansatz zum Erlernen von Designmustern durch Refactoring verbessert das Verst?ndnis erheblich. Die Herausforderungen bei der übersetzung des Codes festigen das theoretische Wissen.
Das obige ist der detaillierte Inhalt vonPython: Refactoring zu Mustern. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hei?e Themen

Pythons untestestes und PyTest sind zwei weit verbreitete Test -Frameworks, die das Schreiben, Organisieren und Ausführen automatisierter Tests vereinfachen. 1. Beide unterstützen die automatische Entdeckung von Testf?llen und liefern eine klare Teststruktur: Unittest definiert Tests durch Erben der Testpase -Klasse und beginnt mit Test \ _; PyTest ist pr?gnanter, ben?tigen nur eine Funktion, die mit Test \ _ beginnt. 2. Sie alle haben eine integrierte Behauptungsunterstützung: Unittest bietet AssertEqual, AssertRue und andere Methoden, w?hrend PyTest eine erweiterte Anweisung für die Assert verwendet, um die Fehlerdetails automatisch anzuzeigen. 3. Alle haben Mechanismen für die Vorbereitung und Reinigung von Tests: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Die dynamische Programmierung (DP) optimiert den L?sungsprozess, indem komplexe Probleme in einfachere Unterprobleme zerlegt und deren Ergebnisse gespeichert werden, um wiederholte Berechnungen zu vermeiden. Es gibt zwei Hauptmethoden: 1. Top-Down (Memorisierung): Das Problem rekursiv zerlegen und Cache verwenden, um Zwischenergebnisse zu speichern; 2. Bottom-up (Tabelle): Iterativ L?sungen aus der grundlegenden Situation erstellen. Geeignet für Szenarien, in denen maximale/minimale Werte, optimale L?sungen oder überlappende Unterprobleme erforderlich sind, wie Fibonacci -Sequenzen, Rucksackprobleme usw. In Python k?nnen sie durch Dekoratoren oder Arrays implementiert werden, und die Aufmerksamkeit sollte für die Identifizierung rekursiver Beziehungen gezahlt werden, und die Optimierung der Komplexit?t des Raums.

Um einen benutzerdefinierten Iterator zu implementieren, müssen Sie die Methoden __iter__ und __next__ in der Klasse definieren. ① Die __iter__ -Methode gibt das Iteratorobjekt selbst, normalerweise selbst, um mit iterativen Umgebungen wie für Schleifen kompatibel zu sein. ② Die __Next__ -Methode steuert den Wert jeder Iteration, gibt das n?chste Element in der Sequenz zurück, und wenn es keine weiteren Elemente mehr gibt, sollte die Ausnahme der Stopperation geworfen werden. ③ Der Status muss korrekt nachverfolgt werden und die Beendigungsbedingungen müssen festgelegt werden, um unendliche Schleifen zu vermeiden. ④ Komplexe Logik wie Filterung von Dateizeilen und achten Sie auf die Reinigung der Ressourcen und die Speicherverwaltung; ⑤ Für eine einfache Logik k?nnen Sie stattdessen die Funktionsertrags für Generator verwenden, müssen jedoch eine geeignete Methode basierend auf dem spezifischen Szenario ausw?hlen.

Zukünftige Trends in Python umfassen Leistungsoptimierung, st?rkere Typ -Eingabeaufforderungen, der Aufstieg alternativer Laufzeiten und das fortgesetzte Wachstum des KI/ML -Feldes. Erstens optimiert CPython weiterhin und verbessert die Leistung durch schnellere Startzeit, Funktionsaufrufoptimierung und vorgeschlagene Ganzzahloperationen. Zweitens sind Typ -Eingabeaufforderungen tief in Sprachen und Toolchains integriert, um die Sicherheit und Entwicklung von Code zu verbessern. Drittens bieten alternative Laufzeiten wie Pyscript und Nuitka neue Funktionen und Leistungsvorteile; Schlie?lich erweitern die Bereiche von KI und Data Science weiter und aufstrebende Bibliotheken f?rdern eine effizientere Entwicklung und Integration. Diese Trends zeigen, dass Python st?ndig an technologische Ver?nderungen anpasst und seine führende Position aufrechterh?lt.

Das Python-Socket-Modul ist die Grundlage für die Netzwerkprogrammierung und bietet Niveau-Netzwerkkommunikationsfunktionen, die für das Erstellen von Client- und Serveranwendungen geeignet sind. Um einen grundlegenden TCP -Server einzurichten, müssen Sie Socket. Um einen TCP -Client zu erstellen, müssen Sie ein Socket -Objekt erstellen und .Connect () anrufen, um eine Verbindung zum Server herzustellen, und dann .Sendall () zum Senden von Daten und .recv () zum Empfangen von Antworten verwenden. Um mehrere Clients zu handhaben, k?nnen Sie 1. Threads verwenden: Starten Sie jedes Mal einen neuen Thread, wenn Sie eine Verbindung herstellen. 2. Asynchrone E/O: Zum Beispiel kann die Asyncio-Bibliothek eine nicht blockierende Kommunikation erreichen. Dinge zu beachten

Der Polymorphismus ist ein Kernkonzept in der objektorientierten Programmierung von Python-Objekte und bezieht sich auf "eine Schnittstelle, mehrere Implementierungen" und erm?glicht eine einheitliche Verarbeitung verschiedener Arten von Objekten. 1. Polymorphismus wird durch Umschreiben durch Methode implementiert. Unterklassen k?nnen übergeordnete Klassenmethoden neu definieren. Zum Beispiel hat die Spoke () -Methode der Tierklasse unterschiedliche Implementierungen in Hunde- und Katzenunterklassen. 2. Die praktischen Verwendungen des Polymorphismus umfassen die Vereinfachung der Codestruktur und die Verbesserung der Skalierbarkeit, z. 3. Die Python -Implementierungspolymorphismus muss erfüllen: Die übergeordnete Klasse definiert eine Methode, und die untergeordnete Klasse überschreibt die Methode, erfordert jedoch keine Vererbung derselben übergeordneten Klasse. Solange das Objekt dieselbe Methode implementiert, wird dies als "Ententyp" bezeichnet. 4. Zu beachten ist die Wartung

Die Kernantwort auf die Python -Liste Slicing besteht darin, die Syntax [Start: Ende: Stufe] zu beherrschen und ihr Verhalten zu verstehen. 1. Das grundlegende Format der Listenschnitte ist die Liste [Start: Ende: Schritt], wobei der Start der Startindex (enthalten) ist, das Ende ist der Endindex (nicht enthalten) und Schritt ist die Schrittgr??e; 2. Start standardm??ig starten mit 0, lasse Ende standardm??ig bis zum Ende aus, standardm??ig standardm??ig 1 aus. 3.. Verwenden Sie My_List [: n], um die ersten N-Elemente zu erhalten, und verwenden Sie My_List [-n:], um die letzten N-Elemente zu erhalten. 4. Verwenden Sie den Schritt, um Elemente wie my_list [:: 2] zu überspringen, um gleiche Ziffern zu erhalten, und negative Schrittwerte k?nnen die Liste umkehren. 5. H?ufige Missverst?ndnisse umfassen den Endindex nicht
