国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Heim Backend-Entwicklung Python-Tutorial Eine Reise in die Vereinfachung maschinellen Lernens

Eine Reise in die Vereinfachung maschinellen Lernens

Dec 23, 2024 pm 08:45 PM

A Journey into Machine Learning Simplification

Der Start eines maschinellen Lernprojekts kann sich überw?ltigend anfühlen, als würde man ein gro?es R?tsel l?sen. Obwohl ich schon seit einiger Zeit auf meiner Reise zum maschinellen Lernen bin, freue ich mich darauf, andere zu unterrichten und anzuleiten, die lernbegierig sind. Heute zeige ich Ihnen, wie Sie Ihre erste Pipeline für maschinelles Lernen (ML) erstellen! Dieses einfache, aber leistungsstarke Tool hilft Ihnen, ML-Modelle effektiv zu erstellen und zu organisieren. Lass uns eintauchen.

Das Problem: Workflow für maschinelles Lernen verwalten
Als ich mit maschinellem Lernen begann, bestand eine der Herausforderungen für mich darin, sicherzustellen, dass mein Arbeitsablauf strukturiert und wiederholbar war. Das Skalieren von Funktionen, das Trainieren von Modellen und das Erstellen von Vorhersagen fühlten sich oft wie unzusammenh?ngende Schritte an, die anf?llig für menschliches Versagen waren, wenn sie jedes Mal manuell durchgeführt wurden. Hier kommt das Konzept einer Pipeline ins Spiel.

Eine ML-Pipeline erm?glicht es Ihnen, mehrere Verarbeitungsschritte hintereinander zu sequenzieren, um Konsistenz sicherzustellen und die Komplexit?t zu reduzieren. Mit der Python-Bibliothek scikit-learn ist das Erstellen einer Pipeline unkompliziert – und ich wage es zu sagen, wunderbar!

Die Inhaltsstoffe von Pipeline
Hier ist der Code, der meine ML-Pipeline zum Leben erweckt hat:

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
import numpy as np
from sklearn.model_selection import train_test_split


steps = [("Scaling", StandardScaler()),("classifier",LogisticRegression())]
pipe = Pipeline(steps)
pipe

X,y = make_classification(random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)


pipe.fit(X_train, y_train)

pipe.predict(X_test)

pipe.score(X_test, y_test)

Lassen Sie es uns aufschlüsseln:

Datenvorbereitung: Ich habe mit make_classification synthetische Klassifizierungsdaten generiert. Dadurch konnte ich die Pipeline testen, ohne einen externen Datensatz zu ben?tigen.
Pipeline-Schritte: Die Pipeline besteht aus zwei Hauptkomponenten:
StandardScaler: Stellt sicher, dass alle Features so skaliert werden, dass sie einen Mittelwert von Null und eine Einheitsvarianz aufweisen.
LogisticRegression: Ein einfacher, aber leistungsstarker Klassifikator zur Vorhersage bin?rer Ergebnisse.
Training und Bewertung: Mithilfe der Pipeline habe ich das Modell trainiert und seine Leistung in einem einzigen nahtlosen Ablauf bewertet. Die Methode ?pipe.score()“ bot eine schnelle M?glichkeit, die Genauigkeit des Modells zu messen.
Was Sie lernen k?nnen
Der Aufbau dieser Pipeline ist mehr als nur eine übung; Es ist eine Gelegenheit, wichtige ML-Konzepte zu erlernen:

Modularit?t ist wichtig: Pipelines modularisieren den Arbeitsablauf für maschinelles Lernen und erleichtern den Austausch von Komponenten (z. B. durch Ausprobieren eines anderen Skalierers oder Klassifikators).
Reproduzierbarkeit ist der Schlüssel: Durch die Standardisierung der Vorverarbeitung und des Modelltrainings minimieren Pipelines das Fehlerrisiko bei der Wiederverwendung oder Weitergabe des Codes.
Effizienzsteigerung: Die Automatisierung sich wiederholender Aufgaben wie Skalierung und Vorhersage spart Zeit und sorgt für Konsistenz über Experimente hinweg.
Ergebnisse und überlegungen
Die Pipeline schnitt bei meinem synthetischen Datensatz gut ab und erreichte einen Genauigkeitswert von über 90 %. Auch wenn dieses Ergebnis nicht bahnbrechend ist, gibt der strukturierte Ansatz Sicherheit für die Bew?ltigung komplexerer Projekte.

Was mich mehr begeistert, ist, diesen Prozess mit anderen zu teilen. Wenn Sie gerade erst anfangen, ist diese Pipeline Ihr erster Schritt zur Beherrschung von Arbeitsabl?ufen für maschinelles Lernen. Und für diejenigen, die sich noch einmal mit den Grundlagen befassen, ist es eine tolle Auffrischung.

Das k?nnen Sie als N?chstes erkunden:

  • Experimentieren Sie mit komplexeren Vorverarbeitungsschritten, wie der Funktionsauswahl oder der Kodierung kategorialer Variablen.
  • Verwenden Sie andere Algorithmen, wie z. B. Entscheidungsb?ume oder Ensemble-Modelle, innerhalb des Pipeline-Frameworks.
  • Erkunden Sie fortgeschrittene Techniken wie die Optimierung von Hyperparametern mithilfe von GridSearchCV in Kombination mit Pipelines.
  • Die Erstellung dieser Pipeline markiert den Beginn einer gemeinsamen Reise – eine, die ebenso faszinierend wie herausfordernd zu werden verspricht. Egal, ob Sie mit mir lernen oder die Grundlagen noch einmal aufgreifen.

Lasst uns gemeinsam weiter wachsen, eine Pipeline nach der anderen!

Das obige ist der detaillierte Inhalt vonEine Reise in die Vereinfachung maschinellen Lernens. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erkl?rung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Hei?e KI -Werkzeuge

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?e Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Jun 19, 2025 am 01:10 AM

Pythons untestestes und PyTest sind zwei weit verbreitete Test -Frameworks, die das Schreiben, Organisieren und Ausführen automatisierter Tests vereinfachen. 1. Beide unterstützen die automatische Entdeckung von Testf?llen und liefern eine klare Teststruktur: Unittest definiert Tests durch Erben der Testpase -Klasse und beginnt mit Test \ _; PyTest ist pr?gnanter, ben?tigen nur eine Funktion, die mit Test \ _ beginnt. 2. Sie alle haben eine integrierte Behauptungsunterstützung: Unittest bietet AssertEqual, AssertRue und andere Methoden, w?hrend PyTest eine erweiterte Anweisung für die Assert verwendet, um die Fehlerdetails automatisch anzuzeigen. 3. Alle haben Mechanismen für die Vorbereitung und Reinigung von Tests: un

Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Was sind dynamische Programmierungstechniken und wie verwende ich sie in Python? Was sind dynamische Programmierungstechniken und wie verwende ich sie in Python? Jun 20, 2025 am 12:57 AM

Die dynamische Programmierung (DP) optimiert den L?sungsprozess, indem komplexe Probleme in einfachere Unterprobleme zerlegt und deren Ergebnisse gespeichert werden, um wiederholte Berechnungen zu vermeiden. Es gibt zwei Hauptmethoden: 1. Top-Down (Memorisierung): Das Problem rekursiv zerlegen und Cache verwenden, um Zwischenergebnisse zu speichern; 2. Bottom-up (Tabelle): Iterativ L?sungen aus der grundlegenden Situation erstellen. Geeignet für Szenarien, in denen maximale/minimale Werte, optimale L?sungen oder überlappende Unterprobleme erforderlich sind, wie Fibonacci -Sequenzen, Rucksackprobleme usw. In Python k?nnen sie durch Dekoratoren oder Arrays implementiert werden, und die Aufmerksamkeit sollte für die Identifizierung rekursiver Beziehungen gezahlt werden, und die Optimierung der Komplexit?t des Raums.

Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Jun 19, 2025 am 01:12 AM

Um einen benutzerdefinierten Iterator zu implementieren, müssen Sie die Methoden __iter__ und __next__ in der Klasse definieren. ① Die __iter__ -Methode gibt das Iteratorobjekt selbst, normalerweise selbst, um mit iterativen Umgebungen wie für Schleifen kompatibel zu sein. ② Die __Next__ -Methode steuert den Wert jeder Iteration, gibt das n?chste Element in der Sequenz zurück, und wenn es keine weiteren Elemente mehr gibt, sollte die Ausnahme der Stopperation geworfen werden. ③ Der Status muss korrekt nachverfolgt werden und die Beendigungsbedingungen müssen festgelegt werden, um unendliche Schleifen zu vermeiden. ④ Komplexe Logik wie Filterung von Dateizeilen und achten Sie auf die Reinigung der Ressourcen und die Speicherverwaltung; ⑤ Für eine einfache Logik k?nnen Sie stattdessen die Funktionsertrags für Generator verwenden, müssen jedoch eine geeignete Methode basierend auf dem spezifischen Szenario ausw?hlen.

Was sind die aufkommenden Trends oder zukünftigen Richtungen in der Python -Programmiersprache und ihrem ?kosystem? Was sind die aufkommenden Trends oder zukünftigen Richtungen in der Python -Programmiersprache und ihrem ?kosystem? Jun 19, 2025 am 01:09 AM

Zukünftige Trends in Python umfassen Leistungsoptimierung, st?rkere Typ -Eingabeaufforderungen, der Aufstieg alternativer Laufzeiten und das fortgesetzte Wachstum des KI/ML -Feldes. Erstens optimiert CPython weiterhin und verbessert die Leistung durch schnellere Startzeit, Funktionsaufrufoptimierung und vorgeschlagene Ganzzahloperationen. Zweitens sind Typ -Eingabeaufforderungen tief in Sprachen und Toolchains integriert, um die Sicherheit und Entwicklung von Code zu verbessern. Drittens bieten alternative Laufzeiten wie Pyscript und Nuitka neue Funktionen und Leistungsvorteile; Schlie?lich erweitern die Bereiche von KI und Data Science weiter und aufstrebende Bibliotheken f?rdern eine effizientere Entwicklung und Integration. Diese Trends zeigen, dass Python st?ndig an technologische Ver?nderungen anpasst und seine führende Position aufrechterh?lt.

Wie führe ich Netzwerkprogrammierung in Python mit Steckdosen durch? Wie führe ich Netzwerkprogrammierung in Python mit Steckdosen durch? Jun 20, 2025 am 12:56 AM

Das Python-Socket-Modul ist die Grundlage für die Netzwerkprogrammierung und bietet Niveau-Netzwerkkommunikationsfunktionen, die für das Erstellen von Client- und Serveranwendungen geeignet sind. Um einen grundlegenden TCP -Server einzurichten, müssen Sie Socket. Um einen TCP -Client zu erstellen, müssen Sie ein Socket -Objekt erstellen und .Connect () anrufen, um eine Verbindung zum Server herzustellen, und dann .Sendall () zum Senden von Daten und .recv () zum Empfangen von Antworten verwenden. Um mehrere Clients zu handhaben, k?nnen Sie 1. Threads verwenden: Starten Sie jedes Mal einen neuen Thread, wenn Sie eine Verbindung herstellen. 2. Asynchrone E/O: Zum Beispiel kann die Asyncio-Bibliothek eine nicht blockierende Kommunikation erreichen. Dinge zu beachten

Polymorphismus in Pythonklassen Polymorphismus in Pythonklassen Jul 05, 2025 am 02:58 AM

Der Polymorphismus ist ein Kernkonzept in der objektorientierten Programmierung von Python-Objekte und bezieht sich auf "eine Schnittstelle, mehrere Implementierungen" und erm?glicht eine einheitliche Verarbeitung verschiedener Arten von Objekten. 1. Polymorphismus wird durch Umschreiben durch Methode implementiert. Unterklassen k?nnen übergeordnete Klassenmethoden neu definieren. Zum Beispiel hat die Spoke () -Methode der Tierklasse unterschiedliche Implementierungen in Hunde- und Katzenunterklassen. 2. Die praktischen Verwendungen des Polymorphismus umfassen die Vereinfachung der Codestruktur und die Verbesserung der Skalierbarkeit, z. 3. Die Python -Implementierungspolymorphismus muss erfüllen: Die übergeordnete Klasse definiert eine Methode, und die untergeordnete Klasse überschreibt die Methode, erfordert jedoch keine Vererbung derselben übergeordneten Klasse. Solange das Objekt dieselbe Methode implementiert, wird dies als "Ententyp" bezeichnet. 4. Zu beachten ist die Wartung

Wie schneide ich eine Liste in Python auf? Wie schneide ich eine Liste in Python auf? Jun 20, 2025 am 12:51 AM

Die Kernantwort auf die Python -Liste Slicing besteht darin, die Syntax [Start: Ende: Stufe] zu beherrschen und ihr Verhalten zu verstehen. 1. Das grundlegende Format der Listenschnitte ist die Liste [Start: Ende: Schritt], wobei der Start der Startindex (enthalten) ist, das Ende ist der Endindex (nicht enthalten) und Schritt ist die Schrittgr??e; 2. Start standardm??ig starten mit 0, lasse Ende standardm??ig bis zum Ende aus, standardm??ig standardm??ig 1 aus. 3.. Verwenden Sie My_List [: n], um die ersten N-Elemente zu erhalten, und verwenden Sie My_List [-n:], um die letzten N-Elemente zu erhalten. 4. Verwenden Sie den Schritt, um Elemente wie my_list [:: 2] zu überspringen, um gleiche Ziffern zu erhalten, und negative Schrittwerte k?nnen die Liste umkehren. 5. H?ufige Missverst?ndnisse umfassen den Endindex nicht

See all articles