


Seaborn-Grundstücksauswahl leicht gemacht: So visualisieren Sie Ihre Daten effektiv
Nov 30, 2024 pm 01:40 PMDatenvisualisierung ist eines der leistungsf?higsten Werkzeuge zur Analyse und Pr?sentation von Daten. Seaborn, eine auf Matplotlib basierende Python-Bibliothek, bietet eine High-Level-Schnittstelle zum Erstellen informativer und vielf?ltiger Visualisierungen. Dieser Artikel führt Sie durch die Auswahl des richtigen Seaborn-Plots, die individuelle Anpassung zur Verdeutlichung und die Vermeidung h?ufiger Fallstricke.
Warum ist die Wahl des richtigen Plottyps wichtig?
Die Art der Darstellung, die Sie w?hlen, wirkt sich direkt darauf aus, wie effektiv Ihre Daten ihre Erkenntnisse und Informationen pr?sentieren.
Ein Streudiagramm zeigt Korrelationen zwischen Variablen.
Eine Heatmap vereinfacht gro?r?umige Vergleiche.
Die Verwendung des falschen Diagrammtyps kann zu Fehlinterpretationen führen, und manchmal werden diese Erkenntnisse aus Daten vergraben und nie enthüllt, weil wir die falsche Visualisierung w?hlen.
Grundlegendes zu den Grundstückskategorien von Seaborn
Seaborn-Plots lassen sich in drei Hauptkategorien einteilen: Relational, Verteilung und Kategorisch. Hier erfahren Sie, wie Sie die einzelnen Elemente ausw?hlen und verwenden.
Quelle:https://seaborn.pydata.org/_images/function_overview_8_0.png
1. Beziehungsdiagramme
Relationale Diagramme visualisieren die Beziehung zwischen zwei Variablen, typischerweise numerisch. Seaborn bietet zwei Haupttypen relationaler Diagramme: Streudiagramme und Liniendiagramme. Sie k?nnen diese Diagramme mit der Funktion therelplot() erstellen.
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Oder Sie k?nnen so schreiben:
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
Das Ergebnis wird immer noch dasselbe sein.
Quelle: Seaborn-Dokumentation
Streudiagramme zeigen einzelne Datenpunkte an und erleichtern so das Erkennen von Mustern oder Korrelationen. Andererseits sind Liniendiagramme ideal, um Trends im Zeitverlauf oder über Kategorien hinweg darzustellen.
2. Verteilungsdiagramme
Das Verst?ndnis der Verteilung von Variablen ist ein entscheidender erster Schritt bei der Analyse oder Modellierung von Daten. Verteilungsdiagramme dienen dazu, die Streuung oder Streuung einer einzelnen Variablen aufzuzeigen. Diese Visualisierungen k?nnen wichtige Fragen schnell beantworten, wie zum Beispiel: Welchen Bereich decken die Daten ab? Was ist seine zentrale Tendenz? Sind die Daten in eine bestimmte Richtung verzerrt?
Wie relationale Diagramme k?nnen Verteilungsdiagramme mit der Funktion displot() erstellt werden, indem der Parameter kind angegeben wird, um den gewünschten Diagrammtyp auszuw?hlen. Alternativ k?nnen Sie Funktionen wie histplot(), kdeplot(), ecdfplot() oder rugplot() direkt für spezifische Verteilungsvisualisierungen verwenden.
Die Funktion histplot() eignet sich hervorragend zur Visualisierung von H?ufigkeitsverteilungen.
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Quelle: Seaborn-Dokumentation
Kdeplot() eignet sich besser für die Darstellung glatter Verteilungskurven, w?hrend ecdfplot() kumulative Anteile hervorhebt. Der rugplot() fügt detaillierte Markierungen für Rohdatenpunkte hinzu und verbessert so andere Visualisierungen mit feineren Details.
Seaborn unterstützt auch die Visualisierung bivariater Verteilungen mithilfe von Tools wie heatmap(). Heatmaps eignen sich besonders gut zur Veranschaulichung von Korrelationsmatrizen oder für Vergleiche.
3. Kategoriale Diagramme
Kategorialdiagramme sollen Daten visualisieren, die in Kategorien organisiert sind. Der allgemeine Ansatz zum Erstellen dieser Diagramme besteht darin, die Funktion catplot() zu verwenden und den Parameter ?kind“ anzugeben, um den gewünschten Diagrammtyp auszuw?hlen. Diese Grundstücke werden in drei Hauptfamilien eingeteilt.
Die Wahl des richtigen Typs der kategorialen Darstellung h?ngt von der konkreten Frage ab, die Sie beantworten m?chten. Diese Diagramme bieten mehrere Perspektiven für die Analyse kategorialer Daten:
- Kategoriale Streudiagramme
Diese Diagramme zeigen einzelne Datenpunkte innerhalb von Kategorien an und helfen so, Muster oder Verteilungen zu erkennen. Beispiele hierfür sind Stripplot() und Swarmplot().
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
Quelle: Seaborn-Dokumentation
- Kategoriale Verteilungsdiagramme
Diese Diagramme fassen die Datenverteilung innerhalb der Kategorien zusammen und bieten Einblicke in Variabilit?t, Verbreitung und zentrale Tendenzen. Beispiele hierfür sind boxplot(), violinplot() und boxenplot().
- Kategoriale Sch?tzdiagramme
Diese Diagramme berechnen aggregierte Sch?tzungen (z. B. Mittelwert) und enthalten Fehlerbalken, um Variabilit?t oder Konfidenzintervalle anzuzeigen. Beispiele hierfür sind barplot(), pointplot() und countplot().
So w?hlen Sie das richtige Seaborn-Grundstück aus
Bevor Sie planen, stellen Sie sich diese Fragen:
Sind die Daten kategorisch, numerisch oder beides?
Untersuchen Sie Beziehungen, Verteilungen oder Vergleiche?
Welche Gr??e und welchen Ma?stab hat der Datensatz?
Die Kenntnis Ihrer Daten führt Sie zu den am besten geeigneten Visualisierungstools. Das folgende Schema stammt von Kaggle und zeigt, wie Sie Ihr Diagramm basierend auf der Art Ihrer Daten ausw?hlen.
Quelle: kaggle
Lassen Sie uns mit realen Daten arbeiten, um dies praktisch umzusetzen. Betrachten Sie einen Datensatz von Kaggle mit 20 Spalten, einschlie?lich Funktionen wie Lernstunden, Anwesenheit, Beteiligung der Eltern, Zugang zu Ressourcen, au?erschulische Aktivit?ten, Schlafstunden, frühere Ergebnisse, Motivationsniveau, Internetzugang, Nachhilfestunden, Familieneinkommen, Lehrerqualit?t, Schule Typ, Einfluss von Gleichaltrigen, k?rperliche Aktivit?t, Lernschwierigkeiten, Bildungsniveau der Eltern, Entfernung von zu Hause, Geschlecht und Prüfungsergebnis.
- Verstehen Sie Ihre Daten Beginnen Sie mit der Analyse der Variablentypen in Ihrem Datensatz, um die Daten zu verstehen. Numerische Variablen eignen sich am besten für Beziehungs- oder Verteilungsdiagramme, w?hrend kategoriale Variablen gut für Gruppierungen oder Vergleiche geeignet sind. Sie k?nnen beispielsweise ein Liniendiagramm verwenden, um Trends in der Mathematikleistung basierend auf der Anwesenheit zu analysieren. Ebenso kann ein Histplot verwendet werden, um die Verteilung der Schlafstunden zu untersuchen und so festzustellen, ob die meisten Schüler ausreichend Ruhe bekommen.
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
- Definieren Sie Ihr Ziel Bestimmen Sie Ihr Ziel, indem Sie fragen, welche Erkenntnisse Sie vermitteln m?chten. M?chten Sie Gruppen vergleichen? Entscheiden Sie sich für einen kategorialen Plot wie einen Barplot oder einen Boxplot. Sind Sie daran interessiert, Beziehungen zu erkunden? Ein relationales Diagramm wie ein Streudiagramm ist eine gute Wahl. M?chten Sie die Variabilit?t verstehen? Verwenden Sie ein Verteilungsdiagramm wie ein Histplot. Beispielsweise stellt ein Streudiagramm effektiv die Beziehung zwischen zwei numerischen Variablen dar, wobei jeder Punkt eine Beobachtung darstellt. Dadurch lassen sich Korrelationen, Cluster oder Ausrei?er leicht erkennen. Die Visualisierung, wie sich die Lernstunden auf die Prüfungsergebnisse auswirken, kann Aufschluss darüber geben, ob mehr Lernzeit mit h?heren Ergebnissen korreliert.
sns.displot(penguins, x="flipper_length_mm", hue="sex", multiple="dodge")
- Passen Sie die Handlung an Ihre Daten und Ihr Ziel an Die Auswahl des geeigneten Diagramms für Ihre Daten- und Analyseziele ist von entscheidender Bedeutung. Mit der richtigen Visualisierung k?nnen Sie effektiv aussagekr?ftige Erkenntnisse gewinnen. Beispielsweise eignet sich ein Liniendiagramm besser zur Beobachtung von Trends im Zeitverlauf als ein Histogramm. Die Verwendung eines falschen Diagramms kann wichtige Muster oder Erkenntnisse verschleiern und selbst einen umfangreichen Datensatz weniger nützlich machen. Ein Barplot eignet sich beispielsweise ideal zum Vergleich der durchschnittlichen Prüfungsergebnisse auf verschiedenen Ebenen der elterlichen Beteiligung. Dieses Diagramm hebt den Mittelwert (oder andere zusammenfassende Statistiken) einer numerischen Variablen über Kategorien hinweg hervor und eignet sich daher perfekt für Vergleiche auf hoher Ebene.
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Tipps zum Anpassen von Seaborn-Plots
Erh?hen Sie die Klarheit Ihrer Visualisierungen, indem Sie Titel und Beschriftungen mithilfe von Funktionen wie plt.title(), plt.xlabel() und plt.ylabel() hinzufügen. Um kategoriale Dimensionen zu integrieren, nutzen Sie das Farbtonattribut in Seaborn, mit dem Sie Datenpunkte anhand einer bestimmten Spalte in Ihrem Datensatz unterscheiden k?nnen. Passen Sie das Farbschema mit Paletten wie Coolwarm, Husl oder Set2 an, indem Sie die Funktion set_palette() verwenden. Differenzieren Sie au?erdem Datenpunkte, indem Sie ihren Stil oder ihre Gr??e mit sns.set_theme() anpassen und die Abbildungsabmessungen mit plt.figure(figsize=(width, height)) definieren.
H?ufige Fallstricke, die es zu vermeiden gilt
Um Erkenntnisse durch Datenvisualisierung effektiv zu kommunizieren, ist es wichtig, ein Gleichgewicht zwischen der Bereitstellung ausreichender Informationen und der Vermeidung einer überfüllung der Plots zu finden. Das überladen eines Diagramms mit zu vielen Datenpunkten kann den Betrachter überfordern, w?hrend unzureichende Details zu Verwirrung führen k?nnen. Fügen Sie immer klare Achsenbeschriftungen und eine Legende hinzu und stellen Sie sicher, dass die Visualisierung die wichtigsten Erkenntnisse hervorhebt, die Sie hervorheben m?chten.
Ein weiteres h?ufiges Problem ist die Erstellung irreführender Visualisierungen. Um dies zu verhindern, stellen Sie sicher, dass die Achsen korrekt skaliert sind, um die Daten darzustellen.
Abschluss
Die Auswahl des richtigen Seaborn-Diagramms ist ein entscheidender Schritt zur Verbesserung des Datenverst?ndnisses und zur effektiven Kommunikation von Erkenntnissen. Durch die entsprechende Visualisierung k?nnen Muster, Zusammenh?nge und Trends aufgedeckt werden, die m?glicherweise verborgen bleiben. Indem Sie den Plottyp an Ihrer Datenstruktur und Ihren Analysezielen ausrichten – sei es die Untersuchung von Verteilungen, Beziehungen oder Vergleichen – stellen Sie Klarheit und Pr?zision in Ihrem Storytelling sicher.
Datenvisualisierung ist ebenso eine Kunst wie eine Wissenschaft. Z?gern Sie nicht, mit verschiedenen Seaborn-Plots zu experimentieren, um neue Perspektiven zu entdecken oder Ihre Erkenntnisse zu verfeinern. Mit übung und Kreativit?t k?nnen Sie das volle Potenzial von Seaborn nutzen, um Rohdaten in überzeugende visuelle Erz?hlungen umzuwandeln.
Das obige ist der detaillierte Inhalt vonSeaborn-Grundstücksauswahl leicht gemacht: So visualisieren Sie Ihre Daten effektiv. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hei?e Themen

Pythons untestestes und PyTest sind zwei weit verbreitete Test -Frameworks, die das Schreiben, Organisieren und Ausführen automatisierter Tests vereinfachen. 1. Beide unterstützen die automatische Entdeckung von Testf?llen und liefern eine klare Teststruktur: Unittest definiert Tests durch Erben der Testpase -Klasse und beginnt mit Test \ _; PyTest ist pr?gnanter, ben?tigen nur eine Funktion, die mit Test \ _ beginnt. 2. Sie alle haben eine integrierte Behauptungsunterstützung: Unittest bietet AssertEqual, AssertRue und andere Methoden, w?hrend PyTest eine erweiterte Anweisung für die Assert verwendet, um die Fehlerdetails automatisch anzuzeigen. 3. Alle haben Mechanismen für die Vorbereitung und Reinigung von Tests: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Die dynamische Programmierung (DP) optimiert den L?sungsprozess, indem komplexe Probleme in einfachere Unterprobleme zerlegt und deren Ergebnisse gespeichert werden, um wiederholte Berechnungen zu vermeiden. Es gibt zwei Hauptmethoden: 1. Top-Down (Memorisierung): Das Problem rekursiv zerlegen und Cache verwenden, um Zwischenergebnisse zu speichern; 2. Bottom-up (Tabelle): Iterativ L?sungen aus der grundlegenden Situation erstellen. Geeignet für Szenarien, in denen maximale/minimale Werte, optimale L?sungen oder überlappende Unterprobleme erforderlich sind, wie Fibonacci -Sequenzen, Rucksackprobleme usw. In Python k?nnen sie durch Dekoratoren oder Arrays implementiert werden, und die Aufmerksamkeit sollte für die Identifizierung rekursiver Beziehungen gezahlt werden, und die Optimierung der Komplexit?t des Raums.

Um einen benutzerdefinierten Iterator zu implementieren, müssen Sie die Methoden __iter__ und __next__ in der Klasse definieren. ① Die __iter__ -Methode gibt das Iteratorobjekt selbst, normalerweise selbst, um mit iterativen Umgebungen wie für Schleifen kompatibel zu sein. ② Die __Next__ -Methode steuert den Wert jeder Iteration, gibt das n?chste Element in der Sequenz zurück, und wenn es keine weiteren Elemente mehr gibt, sollte die Ausnahme der Stopperation geworfen werden. ③ Der Status muss korrekt nachverfolgt werden und die Beendigungsbedingungen müssen festgelegt werden, um unendliche Schleifen zu vermeiden. ④ Komplexe Logik wie Filterung von Dateizeilen und achten Sie auf die Reinigung der Ressourcen und die Speicherverwaltung; ⑤ Für eine einfache Logik k?nnen Sie stattdessen die Funktionsertrags für Generator verwenden, müssen jedoch eine geeignete Methode basierend auf dem spezifischen Szenario ausw?hlen.

Zukünftige Trends in Python umfassen Leistungsoptimierung, st?rkere Typ -Eingabeaufforderungen, der Aufstieg alternativer Laufzeiten und das fortgesetzte Wachstum des KI/ML -Feldes. Erstens optimiert CPython weiterhin und verbessert die Leistung durch schnellere Startzeit, Funktionsaufrufoptimierung und vorgeschlagene Ganzzahloperationen. Zweitens sind Typ -Eingabeaufforderungen tief in Sprachen und Toolchains integriert, um die Sicherheit und Entwicklung von Code zu verbessern. Drittens bieten alternative Laufzeiten wie Pyscript und Nuitka neue Funktionen und Leistungsvorteile; Schlie?lich erweitern die Bereiche von KI und Data Science weiter und aufstrebende Bibliotheken f?rdern eine effizientere Entwicklung und Integration. Diese Trends zeigen, dass Python st?ndig an technologische Ver?nderungen anpasst und seine führende Position aufrechterh?lt.

Das Python-Socket-Modul ist die Grundlage für die Netzwerkprogrammierung und bietet Niveau-Netzwerkkommunikationsfunktionen, die für das Erstellen von Client- und Serveranwendungen geeignet sind. Um einen grundlegenden TCP -Server einzurichten, müssen Sie Socket. Um einen TCP -Client zu erstellen, müssen Sie ein Socket -Objekt erstellen und .Connect () anrufen, um eine Verbindung zum Server herzustellen, und dann .Sendall () zum Senden von Daten und .recv () zum Empfangen von Antworten verwenden. Um mehrere Clients zu handhaben, k?nnen Sie 1. Threads verwenden: Starten Sie jedes Mal einen neuen Thread, wenn Sie eine Verbindung herstellen. 2. Asynchrone E/O: Zum Beispiel kann die Asyncio-Bibliothek eine nicht blockierende Kommunikation erreichen. Dinge zu beachten

Der Polymorphismus ist ein Kernkonzept in der objektorientierten Programmierung von Python-Objekte und bezieht sich auf "eine Schnittstelle, mehrere Implementierungen" und erm?glicht eine einheitliche Verarbeitung verschiedener Arten von Objekten. 1. Polymorphismus wird durch Umschreiben durch Methode implementiert. Unterklassen k?nnen übergeordnete Klassenmethoden neu definieren. Zum Beispiel hat die Spoke () -Methode der Tierklasse unterschiedliche Implementierungen in Hunde- und Katzenunterklassen. 2. Die praktischen Verwendungen des Polymorphismus umfassen die Vereinfachung der Codestruktur und die Verbesserung der Skalierbarkeit, z. 3. Die Python -Implementierungspolymorphismus muss erfüllen: Die übergeordnete Klasse definiert eine Methode, und die untergeordnete Klasse überschreibt die Methode, erfordert jedoch keine Vererbung derselben übergeordneten Klasse. Solange das Objekt dieselbe Methode implementiert, wird dies als "Ententyp" bezeichnet. 4. Zu beachten ist die Wartung

Die Kernantwort auf die Python -Liste Slicing besteht darin, die Syntax [Start: Ende: Stufe] zu beherrschen und ihr Verhalten zu verstehen. 1. Das grundlegende Format der Listenschnitte ist die Liste [Start: Ende: Schritt], wobei der Start der Startindex (enthalten) ist, das Ende ist der Endindex (nicht enthalten) und Schritt ist die Schrittgr??e; 2. Start standardm??ig starten mit 0, lasse Ende standardm??ig bis zum Ende aus, standardm??ig standardm??ig 1 aus. 3.. Verwenden Sie My_List [: n], um die ersten N-Elemente zu erhalten, und verwenden Sie My_List [-n:], um die letzten N-Elemente zu erhalten. 4. Verwenden Sie den Schritt, um Elemente wie my_list [:: 2] zu überspringen, um gleiche Ziffern zu erhalten, und negative Schrittwerte k?nnen die Liste umkehren. 5. H?ufige Missverst?ndnisse umfassen den Endindex nicht
