Django是一個開放源代碼的Web應(yīng)用框架,由Python寫成。采用了MVC的框架模式,即模型M,視圖V和控制器C。它最初是被開發(fā)來用于管理勞倫斯出版集團旗下的一些以新聞內(nèi)容為主的網(wǎng)站的,即是CMS(內(nèi)容管理系統(tǒng))軟件。并于2005年7月在BSD許可證下發(fā)布。這套框架是以比利時的吉普賽爵士吉他手Django Reinhardt來命名的。
《python教程之Django視頻教程》介紹了相關(guān)項目的開發(fā)流程和開發(fā)環(huán)境,日志器的使用,數(shù)據(jù)庫相關(guān)介紹,文件上傳等等功能。
視頻播放地址:http://www.miracleart.cn/course/627.html
學(xué)習(xí)完P(guān)ython進行開發(fā)時的重點難點:
*重點、難點
表單提交與處理
文件上傳 - 如用戶頭像 圖片裁剪
session與cookie - 用戶狀態(tài)信息保存到客戶端
ORM - 對象關(guān)系映射,?python對象與數(shù)據(jù)庫的關(guān)聯(lián)
模板 - 模板規(guī)劃,父模板, 標(biāo)簽, 過濾器
jQuery?- 比如表單驗證
Ajax - 實現(xiàn)和處理Ajax請求
json, xml - 數(shù)據(jù)格式
后臺管理 - admin
日志調(diào)試 - 日志設(shè)置與查看
緩存
安全 - django安全配置,csrf, sql注入
以上是python教程之Django視頻資料分享的詳細內(nèi)容。更多信息請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

熱AI工具

Undress AI Tool
免費脫衣服圖片

Undresser.AI Undress
人工智能驅(qū)動的應(yīng)用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover
用于從照片中去除衣服的在線人工智能工具。

Clothoff.io
AI脫衣機

Video Face Swap
使用我們完全免費的人工智能換臉工具輕松在任何視頻中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的代碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
功能強大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6
視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版
神級代碼編輯軟件(SublimeText3)

用戶語音輸入通過前端JavaScript的MediaRecorderAPI捕獲并發(fā)送至PHP后端;2.PHP將音頻保存為臨時文件后調(diào)用STTAPI(如Google或百度語音識別)轉(zhuǎn)換為文本;3.PHP將文本發(fā)送至AI服務(wù)(如OpenAIGPT)獲取智能回復(fù);4.PHP再調(diào)用TTSAPI(如百度或Google語音合成)將回復(fù)轉(zhuǎn)為語音文件;5.PHP將語音文件流式返回前端播放,完成交互。整個流程由PHP主導(dǎo)數(shù)據(jù)流轉(zhuǎn)與錯誤處理,確保各環(huán)節(jié)無縫銜接。

要實現(xiàn)PHP結(jié)合AI進行文本糾錯與語法優(yōu)化,需按以下步驟操作:1.選擇適合的AI模型或API,如百度、騰訊API或開源NLP庫;2.通過PHP的curl或Guzzle調(diào)用API并處理返回結(jié)果;3.在應(yīng)用中展示糾錯信息并允許用戶選擇是否采納;4.使用php-l和PHP_CodeSniffer進行語法檢測與代碼優(yōu)化;5.持續(xù)收集反饋并更新模型或規(guī)則以提升效果。選擇AIAPI時應(yīng)重點評估準(zhǔn)確率、響應(yīng)速度、價格及對PHP的支持。代碼優(yōu)化應(yīng)遵循PSR規(guī)范、合理使用緩存、避免循環(huán)查詢、定期審查代碼,并借助X

使用Seaborn的jointplot可快速可視化兩個變量間的關(guān)系及各自分布;2.基礎(chǔ)散點圖通過sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter")實現(xiàn),中心為散點圖,上下和右側(cè)顯示直方圖;3.添加回歸線和密度信息可用kind="reg",并結(jié)合marginal_kws設(shè)置邊緣圖樣式;4.數(shù)據(jù)量大時推薦kind="hex",用

要將AI情感計算技術(shù)融入PHP應(yīng)用,核心是利用云服務(wù)AIAPI(如Google、AWS、Azure)進行情感分析,通過HTTP請求發(fā)送文本并解析返回的JSON結(jié)果,將情感數(shù)據(jù)存入數(shù)據(jù)庫,從而實現(xiàn)用戶反饋的自動化處理與數(shù)據(jù)洞察。具體步驟包括:1.選擇適合的AI情感分析API,綜合考慮準(zhǔn)確性、成本、語言支持和集成復(fù)雜度;2.使用Guzzle或curl發(fā)送請求,存儲情感分數(shù)、標(biāo)簽及強度等信息;3.構(gòu)建可視化儀表盤,支持優(yōu)先級排序、趨勢分析、產(chǎn)品迭代方向和用戶細分;4.應(yīng)對技術(shù)挑戰(zhàn),如API調(diào)用限制、數(shù)

字符串列表可用join()方法合并,如''.join(words)得到"HelloworldfromPython";2.數(shù)字列表需先用map(str,numbers)或[str(x)forxinnumbers]轉(zhuǎn)為字符串后才能join;3.任意類型列表可直接用str()轉(zhuǎn)換為帶括號和引號的字符串,適用于調(diào)試;4.自定義格式可用生成器表達式結(jié)合join()實現(xiàn),如'|'.join(f"[{item}]"foriteminitems)輸出"[a]|[

pandas.melt()用于將寬格式數(shù)據(jù)轉(zhuǎn)為長格式,答案是通過指定id_vars保留標(biāo)識列、value_vars選擇需融化的列、var_name和value_name定義新列名,1.id_vars='Name'表示Name列不變,2.value_vars=['Math','English','Science']指定要融化的列,3.var_name='Subject'設(shè)置原列名的新列名,4.value_name='Score'設(shè)置原值的新列名,最終生成包含Name、Subject和Score三列

pythoncanbeoptimizedFormized-formemory-boundoperationsbyreducingOverHeadThroughGenerator,有效dattratsures,andManagingObjectLifetimes.first,useGeneratorSInsteadoFlistSteadoflistSteadoFocessLargedAtasetSoneItematatime,desceedingingLoadeGingloadInterveringerverneDraineNterveingerverneDraineNterveInterveIntMory.second.second.second.second,Choos,Choos

安裝pyodbc:使用pipinstallpyodbc命令安裝庫;2.連接SQLServer:通過pyodbc.connect()方法,使用包含DRIVER、SERVER、DATABASE、UID/PWD或Trusted_Connection的連接字符串,分別支持SQL身份驗證或Windows身份驗證;3.查看已安裝驅(qū)動:運行pyodbc.drivers()并篩選含'SQLServer'的驅(qū)動名,確保使用如'ODBCDriver17forSQLServer'等正確驅(qū)動名稱;4.連接字符串關(guān)鍵參數(shù)
