国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

目錄
What async/await Actually Does
How to Run Async Code Properly
Common Use Cases and Patterns
Things to Watch Out For
首頁 后端開發(fā) Python教程 使用Python async/等待實施異步編程

使用Python async/等待實施異步編程

Jul 11, 2025 am 02:41 AM
python 異步編程

異步編程在Python中通過async和await關鍵字變得更加易用。它允許編寫非阻塞代碼以并發(fā)處理多項任務,尤其適用于I/O密集型操作。async def定義了一個可暫停和恢復的協(xié)程,而await用于等待任務完成而不阻塞整個程序。運行異步代碼需使用事件循環(huán),推薦使用asyncio.run()啟動,并發(fā)執(zhí)行多個協(xié)程時可用asyncio.gather()。常見模式包括同時獲取多個URL數(shù)據(jù)、文件讀寫及網(wǎng)絡服務處理。注意事項包括:需使用支持異步的庫如aiohttp;CPU密集型任務不適用異步;避免混合同步與異步代碼;僅await可等待對象,且應使用asyncio.sleep()代替time.sleep()。掌握這些要點有助于編寫更高效清潔的代碼。

Implementing asynchronous programming with Python async/await

Asynchronous programming in Python has become much more approachable since the introduction of async and await keywords. These tools allow you to write non-blocking code that can handle many tasks concurrently — especially useful for I/O-bound operations like web requests, file handling, or network communication.

Implementing asynchronous programming with Python async/await

If you're new to async programming, it might look a bit different from standard synchronous code, but once you get the hang of it, it’s quite intuitive.


What async/await Actually Does

At its core, async def defines a coroutine — a special kind of function that can be paused and resumed. When you await something inside an async function, you're telling Python to pause execution until the awaited task completes, without blocking the entire program.

Implementing asynchronous programming with Python async/await

For example:

async def fetch_data():
    print("Start fetching")
    await asyncio.sleep(2)
    print("Done fetching")

Here, when await asyncio.sleep(2) is called, Python won’t sit idle for two seconds — it can go do other things (like run another coroutine) in the meantime.

Implementing asynchronous programming with Python async/await

How to Run Async Code Properly

You can't just call an async function like a normal one — doing so returns a coroutine object, not the result. You need an event loop to drive the execution.

In modern Python (3.7 ), the simplest way is using asyncio.run():

asyncio.run(fetch_data())

This handles setting up and tearing down the event loop for you. If you want to run multiple coroutines at once, use asyncio.gather():

asyncio.run(asyncio.gather(fetch_data(), fetch_data()))

This will execute both calls concurrently, rather than waiting for each to finish one after another.


Common Use Cases and Patterns

Async shines brightest when dealing with I/O-bound workloads. Here are a few common patterns:

  • Web scraping or API calls: Fetching data from multiple URLs at once.
  • File reading/writing: Especially when working with remote storage or large files.
  • Network services: Handling multiple clients simultaneously without threads.

A typical async HTTP request using aiohttp looks like this:

import aiohttp

async def fetch_url(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return await response.text()

Then you’d run it with:

asyncio.run(fetch_url("https://example.com"))

Things to Watch Out For

While async is powerful, it's not magic. A few gotchas to keep in mind:

  • Not all libraries support async yet — you'll often need to find async-compatible versions (like aiohttp instead of requests).
  • CPU-bound tasks don't benefit much from async — threading or multiprocessing might be better there.
  • Mixing sync and async code can lead to confusion and performance issues if not handled carefully.

Also, remember:

  • Only await things that are awaitable (coroutines, Tasks, Futures).
  • Don’t block the event loop with time.sleep() — use await asyncio.sleep() instead.

So if you're working on network-heavy or I/O-heavy applications, learning how to use async/await properly can make your code faster and cleaner. It’s not overly complex once you understand the basics, but it does require thinking differently about how your functions interact and run.

基本上就這些。

以上是使用Python async/等待實施異步編程的詳細內容。更多信息請關注PHP中文網(wǎng)其他相關文章!

本站聲明
本文內容由網(wǎng)友自發(fā)貢獻,版權歸原作者所有,本站不承擔相應法律責任。如您發(fā)現(xiàn)有涉嫌抄襲侵權的內容,請聯(lián)系admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣服圖片

Undresser.AI Undress

Undresser.AI Undress

人工智能驅動的應用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用于從照片中去除衣服的在線人工智能工具。

Clothoff.io

Clothoff.io

AI脫衣機

Video Face Swap

Video Face Swap

使用我們完全免費的人工智能換臉工具輕松在任何視頻中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的代碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

功能強大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級代碼編輯軟件(SublimeText3)

熱門話題

Laravel 教程
1600
29
PHP教程
1502
276
PHP調用AI智能語音助手 PHP語音交互系統(tǒng)搭建 PHP調用AI智能語音助手 PHP語音交互系統(tǒng)搭建 Jul 25, 2025 pm 08:45 PM

用戶語音輸入通過前端JavaScript的MediaRecorderAPI捕獲并發(fā)送至PHP后端;2.PHP將音頻保存為臨時文件后調用STTAPI(如Google或百度語音識別)轉換為文本;3.PHP將文本發(fā)送至AI服務(如OpenAIGPT)獲取智能回復;4.PHP再調用TTSAPI(如百度或Google語音合成)將回復轉為語音文件;5.PHP將語音文件流式返回前端播放,完成交互。整個流程由PHP主導數(shù)據(jù)流轉與錯誤處理,確保各環(huán)節(jié)無縫銜接。

如何用PHP結合AI實現(xiàn)文本糾錯 PHP語法檢測與優(yōu)化 如何用PHP結合AI實現(xiàn)文本糾錯 PHP語法檢測與優(yōu)化 Jul 25, 2025 pm 08:57 PM

要實現(xiàn)PHP結合AI進行文本糾錯與語法優(yōu)化,需按以下步驟操作:1.選擇適合的AI模型或API,如百度、騰訊API或開源NLP庫;2.通過PHP的curl或Guzzle調用API并處理返回結果;3.在應用中展示糾錯信息并允許用戶選擇是否采納;4.使用php-l和PHP_CodeSniffer進行語法檢測與代碼優(yōu)化;5.持續(xù)收集反饋并更新模型或規(guī)則以提升效果。選擇AIAPI時應重點評估準確率、響應速度、價格及對PHP的支持。代碼優(yōu)化應遵循PSR規(guī)范、合理使用緩存、避免循環(huán)查詢、定期審查代碼,并借助X

python seaborn關節(jié)圖示例 python seaborn關節(jié)圖示例 Jul 26, 2025 am 08:11 AM

使用Seaborn的jointplot可快速可視化兩個變量間的關系及各自分布;2.基礎散點圖通過sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter")實現(xiàn),中心為散點圖,上下和右側顯示直方圖;3.添加回歸線和密度信息可用kind="reg",并結合marginal_kws設置邊緣圖樣式;4.數(shù)據(jù)量大時推薦kind="hex",用

PHP集成AI情感計算技術 PHP用戶反饋智能分析 PHP集成AI情感計算技術 PHP用戶反饋智能分析 Jul 25, 2025 pm 06:54 PM

要將AI情感計算技術融入PHP應用,核心是利用云服務AIAPI(如Google、AWS、Azure)進行情感分析,通過HTTP請求發(fā)送文本并解析返回的JSON結果,將情感數(shù)據(jù)存入數(shù)據(jù)庫,從而實現(xiàn)用戶反饋的自動化處理與數(shù)據(jù)洞察。具體步驟包括:1.選擇適合的AI情感分析API,綜合考慮準確性、成本、語言支持和集成復雜度;2.使用Guzzle或curl發(fā)送請求,存儲情感分數(shù)、標簽及強度等信息;3.構建可視化儀表盤,支持優(yōu)先級排序、趨勢分析、產(chǎn)品迭代方向和用戶細分;4.應對技術挑戰(zhàn),如API調用限制、數(shù)

python列表到字符串轉換示例 python列表到字符串轉換示例 Jul 26, 2025 am 08:00 AM

字符串列表可用join()方法合并,如''.join(words)得到"HelloworldfromPython";2.數(shù)字列表需先用map(str,numbers)或[str(x)forxinnumbers]轉為字符串后才能join;3.任意類型列表可直接用str()轉換為帶括號和引號的字符串,適用于調試;4.自定義格式可用生成器表達式結合join()實現(xiàn),如'|'.join(f"[{item}]"foriteminitems)輸出"[a]|[

python pandas融化示例 python pandas融化示例 Jul 27, 2025 am 02:48 AM

pandas.melt()用于將寬格式數(shù)據(jù)轉為長格式,答案是通過指定id_vars保留標識列、value_vars選擇需融化的列、var_name和value_name定義新列名,1.id_vars='Name'表示Name列不變,2.value_vars=['Math','English','Science']指定要融化的列,3.var_name='Subject'設置原列名的新列名,4.value_name='Score'設置原值的新列名,最終生成包含Name、Subject和Score三列

優(yōu)化用于內存操作的Python 優(yōu)化用于內存操作的Python Jul 28, 2025 am 03:22 AM

pythoncanbeoptimizedFormized-formemory-boundoperationsbyreducingOverHeadThroughGenerator,有效dattratsures,andManagingObjectLifetimes.first,useGeneratorSInsteadoFlistSteadoflistSteadoFocessLargedAtasetSoneItematatime,desceedingingLoadeGingloadInterveringerverneDraineNterveingerverneDraineNterveInterveIntMory.second.second.second.second,Choos,Choos

Python連接到SQL Server PYODBC示例 Python連接到SQL Server PYODBC示例 Jul 30, 2025 am 02:53 AM

安裝pyodbc:使用pipinstallpyodbc命令安裝庫;2.連接SQLServer:通過pyodbc.connect()方法,使用包含DRIVER、SERVER、DATABASE、UID/PWD或Trusted_Connection的連接字符串,分別支持SQL身份驗證或Windows身份驗證;3.查看已安裝驅動:運行pyodbc.drivers()并篩選含'SQLServer'的驅動名,確保使用如'ODBCDriver17forSQLServer'等正確驅動名稱;4.連接字符串關鍵參數(shù)

See all articles