Python的csv模塊提供了讀寫CSV文件的簡單方法。 1. 讀取CSV文件時(shí),可使用csv.reader()逐行讀取,並將每行數(shù)據(jù)作為字符串列表返回;若需通過列名訪問數(shù)據(jù),則可用csv.DictReader(),它將每行映射為字典。 2. 寫入CSV文件時(shí),使用csv.writer()並調(diào)用writerow()或writerows()方法寫入單行或多行數(shù)據(jù);若要寫入字典數(shù)據(jù),則使用csv.DictWriter(),需先定義列名並通過writeheader()寫入表頭。 3. 處理邊緣情況時(shí),模塊自動處理帶引號字段內(nèi)的逗號和換行符,但需注意正確使用引號;同時(shí)應(yīng)注意編碼問題,如Windows下的UTF-8-BOM,以及避免空白行帶來的問題,建議在打開文件時(shí)始終設(shè)置newline=''。 4. 模塊支持自定義分隔符,通過csv.register_dialect()註冊自定義方言後,可輕鬆?wèi)?yīng)對以非標(biāo)準(zhǔn)分隔符(如製表符)分隔的數(shù)據(jù)文件。
Working with CSV files in Python is straightforward thanks to the built-in csv
module. Whether you're reading from or writing to a CSV file, this module gives you simple tools that handle most common tasks without needing anything else.
Reading CSV Files
If you want to pull data from a CSV file, the csv.reader()
function is your go-to option. It reads the file row by row, giving you each line as a list of strings.
Let's say you have a file called data.csv
that looks like this:
Name,Age,Location Alice,30,New York Bob,25,Los Angeles Charlie,35,Chicago
Here's how you'd read it:
import csv with open('data.csv', newline='') as csvfile: reader = csv.reader(csvfile) for row in reader: print(row)
This will output:
['Name', 'Age', 'Location'] ['Alice', '30', 'New York'] ['Bob', '25', 'Los Angeles'] ['Charlie', '35', 'Chicago']
A few things to note:
- Make sure to use
newline=''
when opening the file to prevent issues with blank lines on some platforms. - Each row is returned as a list, so if you need specific values, just index into the list (eg,
row[1]
for age).
If your CSV has headers and you want to work with named fields, consider using csv.DictReader
, which maps each row to a dictionary:
with open('data.csv', newline='') as csvfile: reader = csv.DictReader(csvfile) for row in reader: print(row['Name'], row['Age'])
Now you're working with key-value pairs instead of indexes — easier to manage if your data has clear column names.
Writing to CSV Files
Writing data to a CSV file is just as easy using csv.writer()
. You create a writer object and then pass it rows of data.
Suppose you have a list of lists and want to write them into a new CSV file:
data = [ ['Name', 'Age', 'Location'], ['Alice', '30', 'New York'], ['Bob', '25', 'Los Angeles'] ] with open('output.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerows(data)
You'll get a file that looks like this:
Name,Age,Location Alice,30,New York Bob,25,Los Angeles
Some tips:
- Use
'w'
mode to overwrite an existing file or create a new one. - If you want to append to an existing CSV, use
'a'
mode instead. - The
writerow()
method writes a single row, whilewriterows()
writes multiple rows at once.
Again, if you want to write dictionaries instead of lists, use csv.DictWriter
. Just remember to specify the fieldnames first:
fieldnames = ['Name', 'Age', 'Location'] with open('output.csv', 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() writer.writerow({'Name': 'Alice', 'Age': 30, 'Location': 'New York'})
Handling Edge Cases
CSV files sometimes contain commas inside quoted fields, or even line breaks within cells. The csv
module handles these cases automatically, but only if you use the module correctly.
For example, if a name is written like "Smith, John"
inside a cell, the reader will still treat it as a single value — as long as the quotes are properly used in the file.
Also, be careful with encoding:
- On Windows, especially with Excel-generated CSVs, you might run into UTF-8-BOM issues. In that case, open the file with
encoding='utf-8-sig'
. - If you're dealing with non-English characters, make sure to set the correct encoding when reading and writing.
Another thing to watch out for: empty lines. Some CSV readers (like Excel) can misinterpret extra blank lines. To avoid that, always use newline=''
when opening files in write mode.
Lastly, don't forget about dialects. The csv
module supports custom dialects if your CSV uses non-standard delimiters (like tabs or semicolons). For example:
csv.register_dialect('mydialect', delimiter='\t', quoting=csv.QUOTE_NONE) with open('data.tsv', newline='') as f: reader = csv.reader(f, dialect='mydialect')
That way, you can adapt the csv
module to fit different formats without rewriting your logic.
These basic patterns cover most use cases. Once you're comfortable with them, you can start combining them — like reading from one CSV, processing the data, and writing to another. But even if you stop here, you've got solid tools for handling CSV files in Python.
以上是如何使用CSV模塊在Python中使用CSV文件?的詳細(xì)內(nèi)容。更多資訊請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

熱AI工具

Undress AI Tool
免費(fèi)脫衣圖片

Undresser.AI Undress
人工智慧驅(qū)動的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費(fèi)的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費(fèi)的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強(qiáng)大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6
視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

用戶語音輸入通過前端JavaScript的MediaRecorderAPI捕獲並發(fā)送至PHP後端;2.PHP將音頻保存為臨時(shí)文件後調(diào)用STTAPI(如Google或百度語音識別)轉(zhuǎn)換為文本;3.PHP將文本發(fā)送至AI服務(wù)(如OpenAIGPT)獲取智能回復(fù);4.PHP再調(diào)用TTSAPI(如百度或Google語音合成)將回復(fù)轉(zhuǎn)為語音文件;5.PHP將語音文件流式返回前端播放,完成交互。整個(gè)流程由PHP主導(dǎo)數(shù)據(jù)流轉(zhuǎn)與錯(cuò)誤處理,確保各環(huán)節(jié)無縫銜接。

要實(shí)現(xiàn)PHP結(jié)合AI進(jìn)行文本糾錯(cuò)與語法優(yōu)化,需按以下步驟操作:1.選擇適合的AI模型或API,如百度、騰訊API或開源NLP庫;2.通過PHP的curl或Guzzle調(diào)用API並處理返回結(jié)果;3.在應(yīng)用中展示糾錯(cuò)信息並允許用戶選擇是否採納;4.使用php-l和PHP_CodeSniffer進(jìn)行語法檢測與代碼優(yōu)化;5.持續(xù)收集反饋並更新模型或規(guī)則以提升效果。選擇AIAPI時(shí)應(yīng)重點(diǎn)評估準(zhǔn)確率、響應(yīng)速度、價(jià)格及對PHP的支持。代碼優(yōu)化應(yīng)遵循PSR規(guī)範(fàn)、合理使用緩存、避免循環(huán)查詢、定期審查代碼,並藉助X

使用Seaborn的jointplot可快速可視化兩個(gè)變量間的關(guān)係及各自分佈;2.基礎(chǔ)散點(diǎn)圖通過sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter")實(shí)現(xiàn),中心為散點(diǎn)圖,上下和右側(cè)顯示直方圖;3.添加回歸線和密度信息可用kind="reg",並結(jié)合marginal_kws設(shè)置邊緣圖樣式;4.數(shù)據(jù)量大時(shí)推薦kind="hex",用

要將AI情感計(jì)算技術(shù)融入PHP應(yīng)用,核心是利用雲(yún)服務(wù)AIAPI(如Google、AWS、Azure)進(jìn)行情感分析,通過HTTP請求發(fā)送文本並解析返回的JSON結(jié)果,將情感數(shù)據(jù)存入數(shù)據(jù)庫,從而實(shí)現(xiàn)用戶反饋的自動化處理與數(shù)據(jù)洞察。具體步驟包括:1.選擇適合的AI情感分析API,綜合考慮準(zhǔn)確性、成本、語言支持和集成複雜度;2.使用Guzzle或curl發(fā)送請求,存儲情感分?jǐn)?shù)、標(biāo)籤及強(qiáng)度等信息;3.構(gòu)建可視化儀錶盤,支持優(yōu)先級排序、趨勢分析、產(chǎn)品迭代方向和用戶細(xì)分;4.應(yīng)對技術(shù)挑戰(zhàn),如API調(diào)用限制、數(shù)

字符串列表可用join()方法合併,如''.join(words)得到"HelloworldfromPython";2.數(shù)字列表需先用map(str,numbers)或[str(x)forxinnumbers]轉(zhuǎn)為字符串後才能join;3.任意類型列表可直接用str()轉(zhuǎn)換為帶括號和引號的字符串,適用於調(diào)試;4.自定義格式可用生成器表達(dá)式結(jié)合join()實(shí)現(xiàn),如'|'.join(f"[{item}]"foriteminitems)輸出"[a]|[

pythoncanbeoptimizedFormized-formemory-boundoperationsbyreducingOverHeadThroughGenerator,有效dattratsures,andManagingObjectLifetimes.first,useGeneratorSInsteadoFlistSteadoflistSteadoFocessLargedAtasetSoneItematatime,desceedingingLoadeGingloadInterveringerverneDraineNterveingerverneDraineNterveInterveIntMory.second.second.second.second,Choos,Choos

安裝pyodbc:使用pipinstallpyodbc命令安裝庫;2.連接SQLServer:通過pyodbc.connect()方法,使用包含DRIVER、SERVER、DATABASE、UID/PWD或Trusted_Connection的連接字符串,分別支持SQL身份驗(yàn)證或Windows身份驗(yàn)證;3.查看已安裝驅(qū)動:運(yùn)行pyodbc.drivers()並篩選含'SQLServer'的驅(qū)動名,確保使用如'ODBCDriver17forSQLServer'等正確驅(qū)動名稱;4.連接字符串關(guān)鍵參數(shù)

pandas.melt()用於將寬格式數(shù)據(jù)轉(zhuǎn)為長格式,答案是通過指定id_vars保留標(biāo)識列、value_vars選擇需融化的列、var_name和value_name定義新列名,1.id_vars='Name'表示Name列不變,2.value_vars=['Math','English','Science']指定要融化的列,3.var_name='Subject'設(shè)置原列名的新列名,4.value_name='Score'設(shè)置原值的新列名,最終生成包含Name、Subject和Score三列
