国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

首頁 後端開發(fā) Python教學(xué) 機(jī)器學(xué)習(xí)簡化之旅

機(jī)器學(xué)習(xí)簡化之旅

Dec 23, 2024 pm 08:45 PM

A Journey into Machine Learning Simplification

啟動機(jī)器學(xué)習(xí)計(jì)畫可能會讓人感到不知所措,就像解決一個大難題一樣。雖然我的機(jī)器學(xué)習(xí)之旅已經(jīng)有一段時間了,但我很高興能夠開始教學(xué)和指導(dǎo)其他渴望學(xué)習(xí)的人。今天,我將向您展示如何建立您的第一個機(jī)器學(xué)習(xí) (ML) 管道!這個簡單但功能強(qiáng)大的工具將幫助您有效地建立和組織機(jī)器學(xué)習(xí)模型。讓我們深入了解一下。

問題:管理機(jī)器學(xué)習(xí)工作流程
當(dāng)開始機(jī)器學(xué)習(xí)時,我面臨的挑戰(zhàn)之一是確保我的工作流程是結(jié)構(gòu)化且可重複的。擴(kuò)展特徵、訓(xùn)練模型和進(jìn)行預(yù)測通常感覺像是脫節(jié)的步驟——如果每次都手動處理,很容易出現(xiàn)人為錯誤。這就是管道概念發(fā)揮作用的地方。

機(jī)器學(xué)習(xí)管道可讓您將多個處理步驟一起排序,從而確保一致性並降低複雜性。借助 Python 庫 scikit-learn,創(chuàng)建管道非常簡單,而且我敢說,令人愉快!

管道的成分
以下是讓我的 ML 管道變得栩栩如生的程式碼:

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
import numpy as np
from sklearn.model_selection import train_test_split


steps = [("Scaling", StandardScaler()),("classifier",LogisticRegression())]
pipe = Pipeline(steps)
pipe

X,y = make_classification(random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)


pipe.fit(X_train, y_train)

pipe.predict(X_test)

pipe.score(X_test, y_test)

讓我們來分解一下:

資料準(zhǔn)備:我使用 make_classification 產(chǎn)生了綜合分類資料。這使我能夠在不需要外部資料集的情況下測試管道。
管道步驟:管道由兩個主要組件組成:
StandardScaler:確保所有特徵都縮放至平均值和單位變異數(shù)為零。
邏輯迴歸:一個簡單但強(qiáng)大的分類器,用來預(yù)測二元結(jié)果。
訓(xùn)練和評估:使用管道,我訓(xùn)練了模型並在單一無縫流程中評估了其性能。 pipeline.score() 方法提供了一種快速測量模型準(zhǔn)確性的方法。
你能學(xué)到什麼
建造這條管道不只是一種練習(xí);更是一種實(shí)踐。這是學(xué)習(xí)關(guān)鍵 ML 概念的機(jī)會:

模組化很重要:管道將機(jī)器學(xué)習(xí)工作流程模組化,從而可以輕鬆更換組件(例如,嘗試不同的縮放器或分類器)。
可重複性是關(guān)鍵:透過標(biāo)準(zhǔn)化預(yù)處理和模型訓(xùn)練,管道可以最大限度地降低重複使用或共享程式碼時出現(xiàn)錯誤的風(fēng)險(xiǎn)。
效率提升:自動化重複性任務(wù)(例如縮放和預(yù)測)可以節(jié)省時間並確保實(shí)驗(yàn)的一致性。
結(jié)果與反思
該管道在我的合成資料集上表現(xiàn)良好,準(zhǔn)確度得分超過 90%。雖然這個結(jié)果並不是開創(chuàng)性的,但結(jié)構(gòu)化方法讓我們有信心處理更複雜的專案。

更讓我興奮的是與他人分享這個過程。如果您剛開始,此管道是您掌握機(jī)器學(xué)習(xí)工作流程的第一步。對於那些重溫基礎(chǔ)知識的人來說,這是一次很好的複習(xí)。

以下是您接下來可以探索的內(nèi)容:

  • 嘗試更複雜的預(yù)處理步驟,例如特徵選擇或編碼分類變數(shù)。
  • 在管道框架內(nèi)使用其他演算法,例如決策樹或整合模型。
  • 探索先進(jìn)技術(shù),例如使用 GridSearchCV 結(jié)合管道進(jìn)行超參數(shù)調(diào)整。
  • 創(chuàng)建這條管道標(biāo)誌著共同旅程的開始——一段既令人著迷又充滿挑戰(zhàn)的旅程。無論您是和我一起學(xué)習(xí)還是重溫基礎(chǔ)知識。

讓我們一起不斷成長,一次一條管道!

以上是機(jī)器學(xué)習(xí)簡化之旅的詳細(xì)內(nèi)容。更多資訊請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本網(wǎng)站聲明
本文內(nèi)容由網(wǎng)友自願投稿,版權(quán)歸原作者所有。本站不承擔(dān)相應(yīng)的法律責(zé)任。如發(fā)現(xiàn)涉嫌抄襲或侵權(quán)的內(nèi)容,請聯(lián)絡(luò)admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費(fèi)脫衣圖片

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅(qū)動的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費(fèi)的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費(fèi)的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強(qiáng)大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Python的UNITDEST或PYTEST框架如何促進(jìn)自動測試? Python的UNITDEST或PYTEST框架如何促進(jìn)自動測試? Jun 19, 2025 am 01:10 AM

Python的unittest和pytest是兩種廣泛使用的測試框架,它們都簡化了自動化測試的編寫、組織和運(yùn)行。 1.二者均支持自動發(fā)現(xiàn)測試用例並提供清晰的測試結(jié)構(gòu):unittest通過繼承TestCase類並以test\_開頭的方法定義測試;pytest則更為簡潔,只需以test\_開頭的函數(shù)即可。 2.它們都內(nèi)置斷言支持:unittest提供assertEqual、assertTrue等方法,而pytest使用增強(qiáng)版的assert語句,能自動顯示失敗詳情。 3.均具備處理測試準(zhǔn)備與清理的機(jī)制:un

如何將Python用於數(shù)據(jù)分析和與Numpy和Pandas等文庫進(jìn)行操作? 如何將Python用於數(shù)據(jù)分析和與Numpy和Pandas等文庫進(jìn)行操作? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisionduetonumpyandpandas.1)numpyExccelSatnumericalComputationswithFast,多dimensionalArraysAndRaysAndOrsAndOrsAndOffectorizedOperationsLikenp.sqrt()

什麼是動態(tài)編程技術(shù),如何在Python中使用它們? 什麼是動態(tài)編程技術(shù),如何在Python中使用它們? Jun 20, 2025 am 12:57 AM

動態(tài)規(guī)劃(DP)通過將復(fù)雜問題分解為更簡單的子問題並存儲其結(jié)果以避免重複計(jì)算,來優(yōu)化求解過程。主要方法有兩種:1.自頂向下(記憶化):遞歸分解問題,使用緩存存儲中間結(jié)果;2.自底向上(表格化):從基礎(chǔ)情況開始迭代構(gòu)建解決方案。適用於需要最大/最小值、最優(yōu)解或存在重疊子問題的場景,如斐波那契數(shù)列、背包問題等。在Python中,可通過裝飾器或數(shù)組實(shí)現(xiàn),並應(yīng)注意識別遞推關(guān)係、定義基準(zhǔn)情況及優(yōu)化空間複雜度。

如何使用__ITER__和__NEXT __在Python中實(shí)現(xiàn)自定義迭代器? 如何使用__ITER__和__NEXT __在Python中實(shí)現(xiàn)自定義迭代器? Jun 19, 2025 am 01:12 AM

要實(shí)現(xiàn)自定義迭代器,需在類中定義__iter__和__next__方法。 ①__iter__方法返回迭代器對象自身,通常為self,以兼容for循環(huán)等迭代環(huán)境;②__next__方法控制每次迭代的值,返回序列中的下一個元素,當(dāng)無更多項(xiàng)時應(yīng)拋出StopIteration異常;③需正確跟蹤狀態(tài)並設(shè)置終止條件,避免無限循環(huán);④可封裝複雜邏輯如文件行過濾,同時注意資源清理與內(nèi)存管理;⑤對簡單邏輯可考慮使用生成器函數(shù)yield替代,但需結(jié)合具體場景選擇合適方式。

Python編程語言及其生態(tài)系統(tǒng)的新興趨勢或未來方向是什麼? Python編程語言及其生態(tài)系統(tǒng)的新興趨勢或未來方向是什麼? Jun 19, 2025 am 01:09 AM

Python的未來趨勢包括性能優(yōu)化、更強(qiáng)的類型提示、替代運(yùn)行時的興起及AI/ML領(lǐng)域的持續(xù)增長。首先,CPython持續(xù)優(yōu)化,通過更快的啟動時間、函數(shù)調(diào)用優(yōu)化及擬議中的整數(shù)操作改進(jìn)提升性能;其次,類型提示深度集成至語言與工具鏈,增強(qiáng)代碼安全性與開發(fā)體驗(yàn);第三,PyScript、Nuitka等替代運(yùn)行時提供新功能與性能優(yōu)勢;最後,AI與數(shù)據(jù)科學(xué)領(lǐng)域持續(xù)擴(kuò)張,新興庫推動更高效的開發(fā)與集成。這些趨勢表明Python正不斷適應(yīng)技術(shù)變化,保持其領(lǐng)先地位。

如何使用插座在Python中執(zhí)行網(wǎng)絡(luò)編程? 如何使用插座在Python中執(zhí)行網(wǎng)絡(luò)編程? Jun 20, 2025 am 12:56 AM

Python的socket模塊是網(wǎng)絡(luò)編程的基礎(chǔ),提供低級網(wǎng)絡(luò)通信功能,適用於構(gòu)建客戶端和服務(wù)器應(yīng)用。要設(shè)置基本TCP服務(wù)器,需使用socket.socket()創(chuàng)建對象,綁定地址和端口,調(diào)用.listen()監(jiān)聽連接,並通過.accept()接受客戶端連接。構(gòu)建TCP客戶端需創(chuàng)建socket對像後調(diào)用.connect()連接服務(wù)器,再使用.sendall()發(fā)送數(shù)據(jù)和??.recv()接收響應(yīng)。處理多個客戶端可通過1.線程:每次連接啟動新線程;2.異步I/O:如asyncio庫實(shí)現(xiàn)無阻塞通信。注意事

Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍?,指“一種接口,多種實(shí)現(xiàn)”,允許統(tǒng)一處理不同類型的對象。 1.多態(tài)通過方法重寫實(shí)現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實(shí)現(xiàn)。 2.多態(tài)的實(shí)際用途包括簡化代碼結(jié)構(gòu)、增強(qiáng)可擴(kuò)展性,例如圖形繪製程序中統(tǒng)一調(diào)用draw()方法,或遊戲開發(fā)中處理不同角色的共同行為。 3.Python實(shí)現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對象實(shí)現(xiàn)相同方法即可,這稱為“鴨子類型”。 4.注意事項(xiàng)包括保持方

如何在Python中切片列表? 如何在Python中切片列表? Jun 20, 2025 am 12:51 AM

Python列表切片的核心答案是掌握[start:end:step]語法並理解其行為。 1.列表切片的基本格式為list[start:end:step],其中start是起始索引(包含)、end是結(jié)束索引(不包含)、step是步長;2.省略start默認(rèn)從0開始,省略end默認(rèn)到末尾,省略step默認(rèn)為1;3.獲取前n項(xiàng)用my_list[:n],獲取後n項(xiàng)用my_list[-n:];4.使用step可跳過元素,如my_list[::2]取偶數(shù)位,負(fù)step值可反轉(zhuǎn)列表;5.常見誤區(qū)包括end索引不

See all articles