国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Jadual Kandungan
Takeaways Key
bilangan hop paling sedikit
Ringkasan
Soalan Lazim (Soalan Lazim) Mengenai Grafik Dalam Struktur Data
Apakah perbezaan antara graf dan pokok dalam struktur data? Pokok adalah sejenis graf, tetapi tidak semua graf adalah pokok. Pokok adalah graf yang disambungkan tanpa sebarang kitaran. Ia mempunyai struktur hierarki dengan nod akar dan nod kanak -kanak. Setiap nod di dalam pokok mempunyai jalan yang unik dari akar. Sebaliknya, graf boleh mempunyai kitaran dan strukturnya lebih kompleks. Ia boleh disambungkan atau terputus dan nod boleh mempunyai pelbagai laluan di antara mereka. senarai. Matriks adjacency adalah saiz 2D saiz V x V di mana v ialah bilangan simpul dalam graf. Sekiranya terdapat kelebihan antara simpang I dan J, maka sel di persimpangan baris I dan Lajur J akan menjadi 1, jika tidak, senarai adjacency adalah pelbagai senarai yang dipautkan. Indeks array mewakili puncak dan setiap elemen dalam senarai yang dipautkannya mewakili simpang lain yang membentuk kelebihan dengan puncak.
Apakah aplikasi grafik dalam sains komputer?
Apakah algoritma traversal graf? (BFS). DFS meneroka sejauh mungkin di sepanjang setiap cawangan sebelum mundur. Ia menggunakan struktur data stack. BFS meneroka semua simpul pada kedalaman sekarang sebelum pergi ke peringkat seterusnya. Ia menggunakan struktur data giliran.
Apakah graf bipartite? dibahagikan kepada dua set disjoint sedemikian rupa sehingga setiap kelebihan menghubungkan puncak dalam satu set ke puncak dalam set yang lain. Tiada kelebihan menghubungkan simpul dalam set yang sama.
Apakah kitaran dalam graf? jalan yang bermula dan berakhir di puncak yang sama dan mempunyai sekurang -kurangnya satu kelebihan.
Rumah pembangunan bahagian belakang tutorial php PHP Master | Struktur Data untuk PHP Devs: Grafik

PHP Master | Struktur Data untuk PHP Devs: Grafik

Feb 23, 2025 am 08:49 AM

PHP Master | Struktur Data untuk PHP Devs: Grafik

Takeaways Key

  • Grafik adalah pembinaan matematik yang digunakan untuk memodelkan hubungan antara pasangan kunci/nilai dan mempunyai banyak aplikasi dunia nyata seperti pengoptimuman rangkaian, penghalaan lalu lintas, dan analisis rangkaian sosial. Mereka terdiri daripada simpang (nod) dan tepi (garisan) yang menghubungkannya, yang boleh diarahkan atau tidak diarahkan, dan berwajaran atau tidak berat.
  • Grafik boleh diwakili dalam dua cara: sebagai matriks adjacency atau senarai adjacency. Senarai adjacency lebih cekap ruang, terutamanya untuk graf jarang di mana kebanyakan pasang simpang tidak berkaitan, manakala matriks adjacency memudahkan carian yang lebih cepat.
  • Aplikasi biasa teori graf adalah mencari bilangan hop paling sedikit (iaitu, jalan terpendek) antara dua nod. Ini boleh dicapai dengan menggunakan carian terlebih dahulu, yang melibatkan melintasi tahap graf dengan tahap dari nod akar yang ditetapkan. Proses ini memerlukan mengekalkan giliran nod yang tidak disahkan.
  • Algoritma Dijkstra digunakan secara meluas untuk mencari jalan terpendek atau paling optimum antara dua nod dalam graf. Ini melibatkan memeriksa setiap kelebihan di antara semua pasangan yang mungkin, bermula dari nod sumber, dan mengekalkan set simpul yang dikemas kini dengan jarak keseluruhan terpendek sehingga nod sasaran dicapai.
Dalam salah satu artikel terdahulu saya memperkenalkan anda kepada struktur data pokok. Sekarang saya ingin meneroka struktur yang berkaitan - graf. Grafik mempunyai beberapa aplikasi dunia nyata, seperti pengoptimuman rangkaian, penghalaan lalu lintas, dan analisis rangkaian sosial. PageRank Google, carian graf Facebook, dan cadangan Amazon dan Netflix adalah beberapa contoh aplikasi yang didorong oleh graf. Dalam artikel ini saya akan meneroka dua masalah biasa di mana graf digunakan-bilangan hop dan masalah terpendek. Grafik adalah pembinaan matematik yang digunakan untuk memodelkan hubungan antara pasangan kunci/nilai. Grafik terdiri daripada satu set simpang (nod) dan nombor sewenang -wenang tepi (baris) yang menghubungkannya. Tepi ini boleh diarahkan atau tidak diarahkan. Kelebihan yang diarahkan hanyalah kelebihan antara dua simpul, dan kelebihan A → B tidak dianggap sama dengan B → a. Kelebihan yang tidak diarahkan tidak mempunyai orientasi atau arah; Edge A-B bersamaan dengan B-A. Struktur pokok yang kita pelajari pada masa lalu boleh dianggap sebagai jenis graf yang tidak diarahkan, di mana setiap puncak disambungkan ke sekurang -kurangnya satu puncak lain dengan jalan yang mudah. Graf juga boleh ditimbang atau tidak berat. Graf berwajaran, atau rangkaian, adalah satu di mana berat atau nilai kos diberikan kepada setiap bahagiannya. Graf berwajaran biasanya digunakan dalam menentukan laluan yang paling optimum, paling sesuai, atau laluan "kos" terendah antara dua mata. Arahan memandu Googlemap adalah contoh yang menggunakan graf berwajaran.

bilangan hop paling sedikit

Permohonan teori graf yang biasa adalah mencari bilangan hop paling sedikit di antara dua nod. Seperti pokok, graf boleh dilalui dalam salah satu daripada dua cara: kedalaman pertama atau terlebih dahulu. Kami meliputi carian mendalam pertama dalam artikel sebelumnya, jadi mari kita lihat carian lebar pertama. Pertimbangkan graf berikut:

PHP Master | Struktur Data untuk PHP Devs: Grafik Demi kesederhanaan, mari kita anggap bahawa graf adalah

tidak diarahkan - iaitu, tepi di mana -mana arah adalah sama. Tugas kami adalah untuk mencari bilangan hop paling sedikit di antara dua nod. Dalam carian terlebih dahulu, kita bermula pada nod akar (atau mana-mana nod yang ditetapkan sebagai akar), dan bekerja di bawah tahap pokok mengikut tahap. Untuk melakukan itu, kita memerlukan giliran untuk mengekalkan senarai nod yang tidak disokong supaya kita dapat mundur dan memprosesnya selepas setiap peringkat. Algoritma Umum kelihatan seperti ini: Tetapi bagaimana kita tahu nod mana yang bersebelahan, apatah lagi tidak disahkan, tanpa melintasi graf pertama? Ini membawa kita kepada masalah bagaimana struktur data graf boleh dimodelkan.
1. Create a queue
2. Enqueue the root node and mark it as visited
3. While the queue is not empty do:
  3a. dequeue the current node
  3b. if the current node is the one we're looking for then stop
  3c. else enqueue each unvisited adjacent node and mark as visited
mewakili graf

Secara umumnya terdapat dua cara untuk mewakili graf: sama ada sebagai matriks adjacency atau senarai adjacency. Grafik di atas diwakili sebagai senarai adjacency kelihatan seperti ini:

Diwakili sebagai matriks, graf kelihatan seperti ini, di mana 1 menunjukkan "kejadian" kelebihan antara 2 simpang:

PHP Master | Struktur Data untuk PHP Devs: Grafik Senarai adjacency adalah lebih cekap ruang, terutamanya untuk graf jarang di mana kebanyakan pasang simpang tidak berkaitan, manakala matriks adjacency memudahkan carian yang lebih cepat. Pada akhirnya, pilihan perwakilan bergantung kepada jenis operasi grafik yang diperlukan. Mari kita gunakan senarai adjacency untuk mewakili graf:

Dan sekarang, mari kita lihat apa pelaksanaan algoritma carian umum terlebih dahulu seperti:
1. Create a queue
2. Enqueue the root node and mark it as visited
3. While the queue is not empty do:
  3a. dequeue the current node
  3b. if the current node is the one we're looking for then stop
  3c. else enqueue each unvisited adjacent node and mark as visited
Menjalankan contoh berikut, kami mendapat:
<span><span><?php
</span></span><span><span>$graph = array(
</span></span><span>  <span>'A' => array('B', 'F'),
</span></span><span>  <span>'B' => array('A', 'D', 'E'),
</span></span><span>  <span>'C' => array('F'),
</span></span><span>  <span>'D' => array('B', 'E'),
</span></span><span>  <span>'E' => array('B', 'D', 'F'),
</span></span><span>  <span>'F' => array('A', 'E', 'C'),
</span></span><span><span>);</span></span>
Jika kami telah menggunakan timbunan dan bukannya barisan, traversal menjadi carian mendalam-pertama.
<span><span><?php
</span></span><span><span>class Graph
</span></span><span><span>{
</span></span><span>  <span>protected $graph;
</span></span><span>  <span>protected $visited = array();
</span></span><span>
</span><span>  <span>public function __construct($graph) {
</span></span><span>    <span>$this->graph = $graph;
</span></span><span>  <span>}
</span></span><span>
</span><span>  <span>// find least number of hops (edges) between 2 nodes
</span></span><span>  <span>// (vertices)
</span></span><span>  <span>public function breadthFirstSearch($origin, $destination) {
</span></span><span>    <span>// mark all nodes as unvisited
</span></span><span>    <span>foreach ($this->graph as $vertex => $adj) {
</span></span><span>      <span>$this->visited[$vertex] = false;
</span></span><span>    <span>}
</span></span><span>
</span><span>    <span>// create an empty queue
</span></span><span>    <span>$q = new SplQueue();
</span></span><span>
</span><span>    <span>// enqueue the origin vertex and mark as visited
</span></span><span>    <span>$q->enqueue($origin);
</span></span><span>    <span>$this->visited[$origin] = true;
</span></span><span>
</span><span>    <span>// this is used to track the path back from each node
</span></span><span>    <span>$path = array();
</span></span><span>    <span>$path[$origin] = new SplDoublyLinkedList();
</span></span><span>    <span>$path[$origin]->setIteratorMode(
</span></span><span>      <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP
</span></span><span>    <span>);
</span></span><span>
</span><span>    <span>$path[$origin]->push($origin);
</span></span><span>
</span><span>    <span>$found = false;
</span></span><span>    <span>// while queue is not empty and destination not found
</span></span><span>    <span>while (!$q->isEmpty() && $q->bottom() != $destination) {
</span></span><span>      <span>$t = $q->dequeue();
</span></span><span>
</span><span>      <span>if (!empty($this->graph[$t])) {
</span></span><span>        <span>// for each adjacent neighbor
</span></span><span>        <span>foreach ($this->graph[$t] as $vertex) {
</span></span><span>          <span>if (!$this->visited[$vertex]) {
</span></span><span>            <span>// if not yet visited, enqueue vertex and mark
</span></span><span>            <span>// as visited
</span></span><span>            <span>$q->enqueue($vertex);
</span></span><span>            <span>$this->visited[$vertex] = true;
</span></span><span>            <span>// add vertex to current path
</span></span><span>            <span>$path[$vertex] = clone $path[$t];
</span></span><span>            <span>$path[$vertex]->push($vertex);
</span></span><span>          <span>}
</span></span><span>        <span>}
</span></span><span>      <span>}
</span></span><span>    <span>}
</span></span><span>
</span><span>    <span>if (isset($path[$destination])) {
</span></span><span>      <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, 
</span></span><span>        <span>count($path[$destination]) - 1,
</span></span><span>        <span>" hopsn";
</span></span><span>      <span>$sep = '';
</span></span><span>      <span>foreach ($path[$destination] as $vertex) {
</span></span><span>        <span>echo $sep, $vertex;
</span></span><span>        <span>$sep = '->';
</span></span><span>      <span>}
</span></span><span>      <span>echo "n";
</span></span><span>    <span>}
</span></span><span>    <span>else {
</span></span><span>      <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>;
</span></span><span>    <span>}
</span></span><span>  <span>}
</span></span><span><span>}</span></span>
Mencari laluan terpendek

Satu lagi masalah biasa ialah mencari jalan yang paling optimum antara dua nod. Terdahulu saya menyebut arahan memandu Googlemap sebagai contoh ini. Aplikasi lain termasuk perjalanan perjalanan perjalanan, pengurusan lalu lintas jalan raya, dan penjadualan kereta api/bas. Salah satu algoritma yang paling terkenal untuk menangani masalah ini dicipta pada tahun 1959 oleh seorang saintis komputer berusia 29 tahun dengan nama Edsger W. Dijkstra. Secara umum, penyelesaian Dijkstra melibatkan memeriksa setiap kelebihan di antara semua pasangan yang mungkin bermula dari nod sumber dan mengekalkan satu set simpul yang dikemas kini dengan jarak singkat sehingga nod sasaran dicapai, atau tidak tercapai, mengikut mana -mana yang mungkin berlaku. Terdapat beberapa cara untuk melaksanakan penyelesaian, dan sememangnya, selama bertahun -tahun berikutan 1959 banyak penambahbaikan - menggunakan Minheaps, Priorityqueues, dan Fibonacci Heaps - dibuat untuk algoritma asal Dijkstra. Beberapa prestasi yang lebih baik, sementara yang lain direka untuk menangani kekurangan dalam penyelesaian Dijkstra kerana ia hanya berfungsi dengan graf berwajaran positif (di mana berat adalah nilai positif). Berikut adalah contoh graf berwajaran (positif):

Kita boleh mewakili graf ini sebagai senarai adjacency, seperti berikut:

1. Create a queue
2. Enqueue the root node and mark it as visited
3. While the queue is not empty do:
  3a. dequeue the current node
  3b. if the current node is the one we're looking for then stop
  3c. else enqueue each unvisited adjacent node and mark as visited
Dan inilah pelaksanaan menggunakan Priorityqueue untuk mengekalkan senarai semua simpang "tidak dapat dioptimumkan":
<span><span><?php
</span></span><span><span>$graph = array(
</span></span><span>  <span>'A' => array('B', 'F'),
</span></span><span>  <span>'B' => array('A', 'D', 'E'),
</span></span><span>  <span>'C' => array('F'),
</span></span><span>  <span>'D' => array('B', 'E'),
</span></span><span>  <span>'E' => array('B', 'D', 'F'),
</span></span><span>  <span>'F' => array('A', 'E', 'C'),
</span></span><span><span>);</span></span>
Seperti yang anda dapat lihat, penyelesaian Dijkstra hanyalah variasi carian terlebih dahulu! Menjalankan contoh berikut menghasilkan hasil berikut:
<span><span><?php
</span></span><span><span>class Graph
</span></span><span><span>{
</span></span><span>  <span>protected $graph;
</span></span><span>  <span>protected $visited = array();
</span></span><span>
</span><span>  <span>public function __construct($graph) {
</span></span><span>    <span>$this->graph = $graph;
</span></span><span>  <span>}
</span></span><span>
</span><span>  <span>// find least number of hops (edges) between 2 nodes
</span></span><span>  <span>// (vertices)
</span></span><span>  <span>public function breadthFirstSearch($origin, $destination) {
</span></span><span>    <span>// mark all nodes as unvisited
</span></span><span>    <span>foreach ($this->graph as $vertex => $adj) {
</span></span><span>      <span>$this->visited[$vertex] = false;
</span></span><span>    <span>}
</span></span><span>
</span><span>    <span>// create an empty queue
</span></span><span>    <span>$q = new SplQueue();
</span></span><span>
</span><span>    <span>// enqueue the origin vertex and mark as visited
</span></span><span>    <span>$q->enqueue($origin);
</span></span><span>    <span>$this->visited[$origin] = true;
</span></span><span>
</span><span>    <span>// this is used to track the path back from each node
</span></span><span>    <span>$path = array();
</span></span><span>    <span>$path[$origin] = new SplDoublyLinkedList();
</span></span><span>    <span>$path[$origin]->setIteratorMode(
</span></span><span>      <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP
</span></span><span>    <span>);
</span></span><span>
</span><span>    <span>$path[$origin]->push($origin);
</span></span><span>
</span><span>    <span>$found = false;
</span></span><span>    <span>// while queue is not empty and destination not found
</span></span><span>    <span>while (!$q->isEmpty() && $q->bottom() != $destination) {
</span></span><span>      <span>$t = $q->dequeue();
</span></span><span>
</span><span>      <span>if (!empty($this->graph[$t])) {
</span></span><span>        <span>// for each adjacent neighbor
</span></span><span>        <span>foreach ($this->graph[$t] as $vertex) {
</span></span><span>          <span>if (!$this->visited[$vertex]) {
</span></span><span>            <span>// if not yet visited, enqueue vertex and mark
</span></span><span>            <span>// as visited
</span></span><span>            <span>$q->enqueue($vertex);
</span></span><span>            <span>$this->visited[$vertex] = true;
</span></span><span>            <span>// add vertex to current path
</span></span><span>            <span>$path[$vertex] = clone $path[$t];
</span></span><span>            <span>$path[$vertex]->push($vertex);
</span></span><span>          <span>}
</span></span><span>        <span>}
</span></span><span>      <span>}
</span></span><span>    <span>}
</span></span><span>
</span><span>    <span>if (isset($path[$destination])) {
</span></span><span>      <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, 
</span></span><span>        <span>count($path[$destination]) - 1,
</span></span><span>        <span>" hopsn";
</span></span><span>      <span>$sep = '';
</span></span><span>      <span>foreach ($path[$destination] as $vertex) {
</span></span><span>        <span>echo $sep, $vertex;
</span></span><span>        <span>$sep = '->';
</span></span><span>      <span>}
</span></span><span>      <span>echo "n";
</span></span><span>    <span>}
</span></span><span>    <span>else {
</span></span><span>      <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>;
</span></span><span>    <span>}
</span></span><span>  <span>}
</span></span><span><span>}</span></span>

Ringkasan

Dalam artikel ini saya telah memperkenalkan asas -asas teori graf, dua cara mewakili graf, dan dua masalah asas dalam penerapan teori graf. Saya telah menunjukkan kepada anda bagaimana carian terlebih dahulu digunakan untuk mencari bilangan hop paling sedikit di antara mana-mana dua nod, dan bagaimana penyelesaian Dijkstra digunakan untuk mencari jalan terpendek antara dua nod. imej melalui Fotolia

Soalan Lazim (Soalan Lazim) Mengenai Grafik Dalam Struktur Data

Apakah perbezaan antara graf dan pokok dalam struktur data? Pokok adalah sejenis graf, tetapi tidak semua graf adalah pokok. Pokok adalah graf yang disambungkan tanpa sebarang kitaran. Ia mempunyai struktur hierarki dengan nod akar dan nod kanak -kanak. Setiap nod di dalam pokok mempunyai jalan yang unik dari akar. Sebaliknya, graf boleh mempunyai kitaran dan strukturnya lebih kompleks. Ia boleh disambungkan atau terputus dan nod boleh mempunyai pelbagai laluan di antara mereka. senarai. Matriks adjacency adalah saiz 2D saiz V x V di mana v ialah bilangan simpul dalam graf. Sekiranya terdapat kelebihan antara simpang I dan J, maka sel di persimpangan baris I dan Lajur J akan menjadi 1, jika tidak, senarai adjacency adalah pelbagai senarai yang dipautkan. Indeks array mewakili puncak dan setiap elemen dalam senarai yang dipautkannya mewakili simpang lain yang membentuk kelebihan dengan puncak.

Apakah jenis graf dalam struktur data? adalah beberapa jenis graf dalam struktur data. Grafik mudah adalah graf tanpa gelung dan tidak lebih daripada satu kelebihan antara dua titik. Multigraf boleh mempunyai pelbagai tepi antara simpang. Grafik lengkap adalah graf mudah di mana setiap pasangan simpul disambungkan oleh kelebihan. Graf berwajaran memberikan berat kepada setiap kelebihan. Grafik yang diarahkan (atau digraph) mempunyai tepi dengan arah. Titik tepi dari satu puncak ke yang lain.

Apakah aplikasi grafik dalam sains komputer?

Grafik digunakan dalam banyak aplikasi dalam sains komputer. Mereka digunakan dalam rangkaian sosial untuk mewakili hubungan antara orang. Mereka digunakan dalam merangkak web untuk melawat laman web dan membina indeks carian. Mereka digunakan dalam algoritma penghalaan rangkaian untuk mencari jalan terbaik antara dua nod. Mereka digunakan dalam biologi untuk memodelkan dan menganalisis rangkaian biologi. Mereka juga digunakan dalam simulasi grafik komputer dan fizik.

Apakah algoritma traversal graf? (BFS). DFS meneroka sejauh mungkin di sepanjang setiap cawangan sebelum mundur. Ia menggunakan struktur data stack. BFS meneroka semua simpul pada kedalaman sekarang sebelum pergi ke peringkat seterusnya. Ia menggunakan struktur data giliran.

Bagaimana untuk melaksanakan graf di Java? Setiap kunci dalam hashmap adalah puncak dan nilainya adalah senarai yang berkaitan yang mengandungi simpang yang disambungkan ke.

Apakah graf bipartite? dibahagikan kepada dua set disjoint sedemikian rupa sehingga setiap kelebihan menghubungkan puncak dalam satu set ke puncak dalam set yang lain. Tiada kelebihan menghubungkan simpul dalam set yang sama.

Apakah subgraph? Ia mempunyai beberapa (atau semua) simpul grafik asal dan beberapa (atau semua) tepi graf asal.

Apakah kitaran dalam graf? jalan yang bermula dan berakhir di puncak yang sama dan mempunyai sekurang -kurangnya satu kelebihan.

simpang berturut -turut disambungkan oleh kelebihan.

Atas ialah kandungan terperinci PHP Master | Struktur Data untuk PHP Devs: Grafik. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana saya melaksanakan pengesahan dan kebenaran dalam php? Bagaimana saya melaksanakan pengesahan dan kebenaran dalam php? Jun 20, 2025 am 01:03 AM

TosecurelyhandleAuthenticationandauthorizationInphp, ikuti: 1.alwayshashpasswordswithpassword_hash () andverifyUsingPassword_verify (), usePePreparedStatementStopreventsqlInjection, andStoreUserDatain $ _SessionAsLogin.2.implescureRoleRoleRoleRoleRole

Bagaimana anda boleh mengendalikan fail memuat naik dengan selamat di php? Bagaimana anda boleh mengendalikan fail memuat naik dengan selamat di php? Jun 19, 2025 am 01:05 AM

Untuk mengendalikan muat naik fail dengan selamat di PHP, terasnya adalah untuk mengesahkan jenis fail, menamakan semula fail, dan menyekat kebenaran. 1. Gunakan finfo_file () untuk memeriksa jenis mime sebenar, dan hanya jenis tertentu seperti imej/jpeg dibenarkan; 2. Gunakan uniqid () untuk menghasilkan nama fail rawak dan simpannya dalam direktori akar bukan web; 3. Hadkan saiz fail melalui borang php.ini dan html, dan tetapkan kebenaran direktori ke 0755; 4. Gunakan Clamav untuk mengimbas malware untuk meningkatkan keselamatan. Langkah -langkah ini dengan berkesan menghalang kelemahan keselamatan dan memastikan bahawa proses muat naik fail adalah selamat dan boleh dipercayai.

Apakah perbezaan antara == (perbandingan longgar) dan === (perbandingan ketat) dalam php? Apakah perbezaan antara == (perbandingan longgar) dan === (perbandingan ketat) dalam php? Jun 19, 2025 am 01:07 AM

Dalam PHP, perbezaan utama antara == dan == adalah ketat pemeriksaan jenis. == Penukaran jenis akan dilakukan sebelum perbandingan, contohnya, 5 == "5" pulangan benar, dan === meminta nilai dan jenis adalah sama sebelum benar akan dikembalikan, sebagai contoh, 5 === "5" mengembalikan palsu. Dalam senario penggunaan, === lebih selamat dan harus digunakan terlebih dahulu, dan == hanya digunakan apabila penukaran jenis diperlukan.

Bagaimanakah saya melakukan operasi aritmetik dalam php (, -, *, /, %)? Bagaimanakah saya melakukan operasi aritmetik dalam php (, -, *, /, %)? Jun 19, 2025 pm 05:13 PM

Kaedah menggunakan operasi matematik asas dalam PHP adalah seperti berikut: 1. Tanda tambahan menyokong bilangan bulat dan nombor terapung, dan juga boleh digunakan untuk pembolehubah. Nombor rentetan akan ditukar secara automatik tetapi tidak disyorkan kepada kebergantungan; 2. Tanda -tanda pengurangan - tanda, pembolehubah adalah sama, dan penukaran jenis juga terpakai; 3. Tanda -tanda pendaraban menggunakan tanda *, yang sesuai untuk nombor dan rentetan yang serupa; 4. Bahagian menggunakan / tanda, yang perlu mengelakkan pembahagian dengan sifar, dan perhatikan bahawa hasilnya mungkin nombor terapung; 5. Mengambil tanda modulus boleh digunakan untuk menilai angka ganjil dan bahkan, dan apabila memproses nombor negatif, tanda -tanda selebihnya selaras dengan dividen. Kunci untuk menggunakan pengendali ini dengan betul adalah untuk memastikan bahawa jenis data adalah jelas dan keadaan sempadan ditangani dengan baik.

Bagaimanakah anda boleh berinteraksi dengan pangkalan data NoSQL (mis., MongoDB, Redis) dari PHP? Bagaimanakah anda boleh berinteraksi dengan pangkalan data NoSQL (mis., MongoDB, Redis) dari PHP? Jun 19, 2025 am 01:07 AM

Ya, PHP boleh berinteraksi dengan pangkalan data NoSQL seperti MongoDB dan Redis melalui sambungan atau perpustakaan tertentu. Pertama, gunakan pemacu MongoDBPHP (dipasang melalui PECL atau komposer) untuk membuat contoh pelanggan dan mengendalikan pangkalan data dan koleksi, penyisipan sokongan, pertanyaan, pengagregatan dan operasi lain; Kedua, gunakan perpustakaan predis atau lanjutan phpredis untuk menyambung ke REDIS, lakukan tetapan dan pengambilalihan nilai utama, dan mengesyorkan PHPREDI untuk senario berprestasi tinggi, sementara Predis mudah untuk penempatan pesat; Kedua-duanya sesuai untuk persekitaran pengeluaran dan didokumentasikan dengan baik.

Bagaimanakah saya tetap terkini dengan perkembangan php terkini dan amalan terbaik? Bagaimanakah saya tetap terkini dengan perkembangan php terkini dan amalan terbaik? Jun 23, 2025 am 12:56 AM

Tostaycurrentwithphpdevelopmentsandbestpractices, followeyNewsssourcesLikePhp.netandphpweekly, engageWithCommunitiesonforumsandconference, keeptoolingupdatedandgraduallyAdoptNewFeatures, dan readribcoursourcourceSource

Apakah php, dan mengapa ia digunakan untuk pembangunan web? Apakah php, dan mengapa ia digunakan untuk pembangunan web? Jun 23, 2025 am 12:55 AM

Phpbecamepopularforwebdevelopmentduetoitseaseoflearning, seamlessintegrationwithhtml, widespreadhostingsupport, andalargeecosystemincludingframeworkslikelaravelandcmsplatformsLikeWordPress.itexcelsinhandessubmissions

Bagaimana cara menetapkan zon waktu php? Bagaimana cara menetapkan zon waktu php? Jun 25, 2025 am 01:00 AM

TosetTheRightTimeZoneinPhp, USEDATE_DEFAULT_TIMEZONE_SET () functionAtthestArtAfyourscriptwithavalididentifiersuchas'america/new_york'.1.usedate_default_timeSet ()

See all articles