国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Jadual Kandungan
Mengapa Memilih Python untuk Pembelajaran Mesin?
Perpustakaan Python Penting untuk Pembelajaran Mesin
Menyediakan Persekitaran Pembangunan Anda
Aliran Kerja Pembelajaran Mesin Praktikal
Sumber Pembelajaran Lanjut
Rumah pembangunan bahagian belakang Tutorial Python Bermula dengan Python untuk Pembelajaran Mesin

Bermula dengan Python untuk Pembelajaran Mesin

Jan 19, 2025 am 06:31 AM

Getting Started with Python for Machine Learning

Kepopularan Python dalam Pembelajaran Mesin (ML) berpunca daripada kemudahan penggunaan, fleksibiliti dan sokongan perpustakaan yang meluas. Panduan ini menyediakan pengenalan asas untuk menggunakan Python untuk ML, meliputi perpustakaan penting dan menunjukkan binaan model mudah.


Mengapa Memilih Python untuk Pembelajaran Mesin?

Penguasaan Python dalam bidang ML adalah disebabkan oleh beberapa kelebihan utama:

  • Mesra Pemula: Sintaks intuitifnya menjadikannya boleh diakses oleh pendatang baharu.
  • Perpustakaan Kaya: Banyak perpustakaan memudahkan manipulasi data, visualisasi dan pembinaan model.
  • Sokongan Komuniti Teguh: Komuniti yang besar dan aktif memastikan sumber dan bantuan tersedia.

Python menawarkan alatan yang komprehensif untuk setiap peringkat proses ML, daripada analisis data kepada penggunaan model.


Perpustakaan Python Penting untuk Pembelajaran Mesin

Sebelum memulakan perjalanan ML anda, biasakan diri anda dengan perpustakaan Python yang penting ini:

NumPy: Asas pengkomputeran berangka dalam Python. Menyediakan sokongan untuk tatasusunan, matriks dan fungsi matematik.

  • Aplikasi: Penting untuk operasi berangka asas, algebra linear dan manipulasi tatasusunan.

Panda: Pustaka yang berkuasa untuk manipulasi dan analisis data. Struktur DataFramenya memudahkan kerja dengan data berstruktur.

  • Aplikasi: Sesuai untuk memuatkan, membersihkan dan meneroka set data.

Scikit-learn: Pustaka ML yang paling banyak digunakan dalam Python. Menawarkan alatan yang cekap untuk perlombongan dan analisis data, termasuk algoritma untuk pengelasan, regresi dan pengelompokan.

  • Aplikasi: Membina dan menilai model ML.

Menyediakan Persekitaran Pembangunan Anda

Pasang perpustakaan yang diperlukan menggunakan pip:

pip install numpy pandas scikit-learn

Setelah dipasang, anda sudah bersedia untuk memulakan pengekodan.


Aliran Kerja Pembelajaran Mesin Praktikal

Mari bina model ML asas menggunakan set data Iris, yang mengelaskan spesies iris berdasarkan ukuran kelopak.

Langkah 1: Import Perpustakaan

Import perpustakaan yang diperlukan:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

Langkah 2: Muatkan Set Data

Muatkan set data Iris menggunakan Scikit-learn:

# Load the Iris dataset
iris = load_iris()

# Convert to a Pandas DataFrame
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['species'] = iris.target

Langkah 3: Penerokaan Data

Analisis data:

# Display initial rows
print(data.head())

# Check for missing values
print(data.isnull().sum())

# Summary statistics
print(data.describe())

Langkah 4: Penyediaan Data

Asingkan ciri (X) dan label (y), dan bahagikan data kepada set latihan dan ujian:

# Features (X) and labels (y)
X = data.drop('species', axis=1)
y = data['species']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Langkah 5: Latihan Model

Latih pengelas Hutan Rawak:

pip install numpy pandas scikit-learn

Langkah 6: Ramalan dan Penilaian

Buat ramalan dan nilaikan ketepatan model:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

Tahniah! Anda telah membuat model ML pertama anda. Untuk melanjutkan pembelajaran anda:

  • Teroka set data daripada Kaggle atau Repositori Pembelajaran Mesin UCI.
  • Percubaan dengan algoritma lain (regresi linear, pepohon keputusan, mesin vektor sokongan).
  • Ketahui teknik prapemprosesan data (penskalaan, pengekodan, pemilihan ciri).

Sumber Pembelajaran Lanjut

  • Dokumentasi Scikit-Learn: Panduan rasmi Scikit-Learn.
  • Kaggle Learn: Tutorial ML praktikal untuk pemula.
  • Pembelajaran Mesin Python oleh Sebastian Raschka: Buku mesra pengguna tentang ML dengan Python.

Atas ialah kandungan terperinci Bermula dengan Python untuk Pembelajaran Mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Jun 19, 2025 am 01:10 AM

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Jun 19, 2025 am 01:04 AM

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Apakah teknik pengaturcaraan dinamik, dan bagaimana saya menggunakannya dalam Python? Apakah teknik pengaturcaraan dinamik, dan bagaimana saya menggunakannya dalam Python? Jun 20, 2025 am 12:57 AM

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Jun 19, 2025 am 01:12 AM

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Apakah trend yang muncul atau arahan masa depan dalam bahasa pengaturcaraan Python dan ekosistemnya? Apakah trend yang muncul atau arahan masa depan dalam bahasa pengaturcaraan Python dan ekosistemnya? Jun 19, 2025 am 01:09 AM

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Bagaimana saya melakukan pengaturcaraan rangkaian di python menggunakan soket? Bagaimana saya melakukan pengaturcaraan rangkaian di python menggunakan soket? Jun 20, 2025 am 12:56 AM

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme dalam kelas python Polimorfisme dalam kelas python Jul 05, 2025 am 02:58 AM

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Bagaimana saya mengiris senarai dalam python? Bagaimana saya mengiris senarai dalam python? Jun 20, 2025 am 12:51 AM

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak

See all articles