


Mengikis Web dengan Sup Cantik dan Mengikis: Mengekstrak Data Dengan Cekap dan Bertanggungjawab
Jan 05, 2025 am 07:18 AMDalam era digital, data ialah aset yang berharga dan pengikisan web telah menjadi alat penting untuk mengekstrak maklumat daripada tapak web. Artikel ini meneroka dua perpustakaan Python yang popular untuk mengikis web: Sup Cantik dan Scrapy. Kami akan menyelidiki ciri mereka, menyediakan contoh kod kerja langsung dan membincangkan amalan terbaik untuk mengikis web yang bertanggungjawab.
Pengenalan kepada Web Scraping
Pengikisan web ialah proses automatik untuk mengekstrak data daripada tapak web. Ia digunakan secara meluas dalam pelbagai bidang, termasuk analisis data, pembelajaran mesin dan analisis kompetitif. Walau bagaimanapun, pengikisan web mesti dilakukan dengan penuh tanggungjawab untuk menghormati syarat perkhidmatan tapak web dan sempadan undang-undang.
Sup Cantik: Perpustakaan Mesra Pemula
Beautiful Soup ialah perpustakaan Python yang direka untuk tugas mengikis web yang cepat dan mudah. Ia amat berguna untuk menghuraikan dokumen HTML dan XML dan mengekstrak data daripadanya. Beautiful Soup menyediakan simpulan bahasa Pythonic untuk mengulang, mencari dan mengubah suai pokok parse.
Ciri-ciri Utama
- Kemudahan Penggunaan: Sup Cantik mesra pemula dan mudah dipelajari.
- Penghuraian Fleksibel: Ia boleh menghuraikan dokumen HTML dan XML, malah dokumen yang mempunyai penanda yang salah.
- Integrasi: Berfungsi dengan baik dengan perpustakaan Python lain seperti permintaan untuk mengambil halaman web.
Memasang
Untuk bermula dengan Beautiful Soup, anda perlu memasangnya bersama-sama dengan perpustakaan permintaan:
pip install beautifulsoup4 requests
Contoh Asas
Mari kita ekstrak tajuk artikel daripada halaman blog contoh:
import requests from bs4 import BeautifulSoup # Fetch the web page url = 'https://example-blog.com' response = requests.get(url) # Check if the request was successful if response.status_code == 200: # Parse the HTML content soup = BeautifulSoup(response.text, 'html.parser') # Extract article titles titles = soup.find_all('h1', class_='entry-title') # Check if titles were found if titles: for title in titles: # Extract and print the text of each title print(title.get_text(strip=True)) else: print("No titles found. Please check the HTML structure and update the selector.") else: print(f"Failed to retrieve the page. Status code: {response.status_code}")
Kelebihan
- Kesederhanaan: Sesuai untuk projek kecil hingga sederhana.
- Keteguhan: Mengendalikan HTML berformat buruk dengan anggun.
Scrapy: Rangka Kerja Mengikis Web yang Berkuasa
Scrapy ialah rangka kerja mengikis web komprehensif yang menyediakan alat untuk pengekstrakan data berskala besar. Ia direka bentuk untuk prestasi dan fleksibiliti, menjadikannya sesuai untuk projek yang kompleks.
Ciri-ciri Utama
- Kelajuan dan Kecekapan: Sokongan terbina dalam untuk permintaan tak segerak.
- Keterluasan: Sangat boleh disesuaikan dengan perisian tengah dan saluran paip.
- Eksport Data Terbina dalam: Menyokong pengeksportan data dalam pelbagai format seperti JSON, CSV dan XML.
Memasang
Pasang Scrapy menggunakan pip:
pip install scrapy
Contoh Asas
Untuk menunjukkan Scrapy, kami akan mencipta labah-labah untuk mengikis petikan daripada tapak web:
- Buat Projek Scrapy:
pip install beautifulsoup4 requests
- Tentukan Labah-labah: Buat fail quotes_spider.py dalam direktori spiders:
import requests from bs4 import BeautifulSoup # Fetch the web page url = 'https://example-blog.com' response = requests.get(url) # Check if the request was successful if response.status_code == 200: # Parse the HTML content soup = BeautifulSoup(response.text, 'html.parser') # Extract article titles titles = soup.find_all('h1', class_='entry-title') # Check if titles were found if titles: for title in titles: # Extract and print the text of each title print(title.get_text(strip=True)) else: print("No titles found. Please check the HTML structure and update the selector.") else: print(f"Failed to retrieve the page. Status code: {response.status_code}")
- Jalankan Labah-labah: Jalankan labah-labah untuk mengikis data:
pip install scrapy
Kelebihan
- Skalabiliti: Mengendalikan projek mengikis berskala besar dengan cekap.
- Ciri Terbina dalam: Menawarkan ciri teguh seperti penjadualan permintaan dan saluran paip data.
Amalan Terbaik untuk Mengikis Web Bertanggungjawab
Walaupun pengikisan web adalah alat yang berkuasa, adalah penting untuk menggunakannya secara bertanggungjawab:
- Hormati Robots.txt: Sentiasa semak fail robots.txt tapak web untuk memahami halaman mana yang boleh dikikis.
- Penghadan Kadar: Laksanakan kelewatan antara permintaan untuk mengelakkan pelayan yang membebankan.
- Putaran Ejen Pengguna: Gunakan rentetan ejen pengguna yang berbeza untuk meniru gelagat pengguna sebenar.
- Pematuhan Undang-undang: Pastikan pematuhan terhadap keperluan undang-undang dan syarat perkhidmatan tapak web.
Kesimpulan
Sup Cantik dan Scrapy ialah alat yang berkuasa untuk mengikis web, masing-masing dengan kekuatannya. Beautiful Soup sesuai untuk pemula dan projek kecil, manakala Scrapy sesuai untuk tugas mengikis berskala besar dan kompleks. Dengan mengikuti amalan terbaik, anda boleh mengekstrak data dengan cekap dan bertanggungjawab, membuka kunci cerapan berharga
nota: Kandungan bantuan AI
Atas ialah kandungan terperinci Mengikis Web dengan Sup Cantik dan Mengikis: Mengekstrak Data Dengan Cekap dan Bertanggungjawab. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak
