Struktur data yang diisih memainkan peranan penting dalam mengoptimumkan operasi carian, sisipan dan pemadaman sambil mengekalkan susunan. Python menyediakan pelbagai alat dan perpustakaan untuk bekerja dengan struktur sedemikian, menawarkan penyelesaian yang cekap untuk pelbagai masalah dunia sebenar. Kami akan meliputi yang berikut:
- Timbunan.
- Senarai diisih.
- Kamus yang diisih.
- Set diisih.
modul heapq
Untuk pelaksanaan struktur data timbunan yang teguh (khususnya timbunan min), perpustakaan standard Python menyediakan sokongan terbina dalam. Modul heapq menyediakan pelaksanaan barisan keutamaan berasaskan timbunan. Ia menggunakan timbunan binari untuk mengekalkan susunan separa, menjadikannya sesuai untuk senario yang memerlukan akses berulang kepada elemen terkecil (atau terbesar).
Contoh:
import heapq heap = [3, 1, 4] heapq.heapify(heap) heapq.heappush(heap, 2) print(heap) # Output: [1, 2, 4, 3] smallest = heapq.heappop(heap) print(smallest) # Output: 1
Rujuk dokumentasi rasmi untuk senarai komprehensif operasi yang tersedia dan contoh tambahan.
Modul sortedcontainers
Modul sortedcontainers menyediakan struktur data diisih dinamik yang melaraskan secara automatik apabila elemen ditambah atau dialih keluar. Perpustakaan ini sangat cekap dan mudah digunakan.
Senarai Isih:
Mengekalkan senarai diisih dengan susunan dinamik.
from sortedcontainers import SortedList sl = SortedList([3, 1, 4]) sl.add(2) print(sl) # Output: [1, 2, 3, 4]
Ia juga menerima parameter utama, serupa dengan yang digunakan dalam fungsi sorted().
from sortedcontainers import SortedList from operator import neg sl = SortedList([3, 1, 4], key=neg) print(sl) # Output: [4, 3, 1]
Nota: SortedList menyokong hampir semua kaedah jujukan boleh ubah kecuali beberapa kaedah yang tidak disokong dan akan menimbulkan ralat yang tidak dilaksanakan.
SortedDict:
Kamus dengan kunci diselenggara dalam susunan yang disusun. Reka bentuk dict diisih adalah mudah: dict diisih mewarisi daripada dict ke menyimpan item dan mengekalkan senarai kunci yang diisih.
Kunci dict yang diisih mestilah boleh dicincang dan boleh dibandingkan. Cincang dan jumlah pesanan kunci tidak boleh berubah semasa ia disimpan dalam dict yang diisih.
from sortedcontainers import SortedDict sd = SortedDict({"b": 2, "a": 1}) sd["c"] = 3 print(sd) # Output: {'a': 1, 'b': 2, 'c': 3}
Set Sorted:
Set yang memastikan elemennya diisih.
from sortedcontainers import SortedSet ss = SortedSet([3, 1, 1, 4]) ss.add(2) print(ss) # Output: SortedSet([1, 2, 3, 4])
Seperti SortedList, SortedSet juga menerima parameter utama yang boleh digunakan dengan cara yang sama.
Tukar ganti bagi Struktur Data Isih
Walaupun struktur data yang diisih menawarkan kelebihan yang ketara, ia datang dengan pertukaran:
- Overhed Sisipan/Pemadaman: Mengekalkan ketertiban semasa operasi ini boleh meningkatkan kos pengiraan berbanding struktur yang tidak diisih.
- Memori Overhed: Sesetengah pelaksanaan mungkin menggunakan memori tambahan untuk mengindeks atau mengekalkan susunan.
Kesimpulan
Struktur data yang diisih ialah alat yang sangat diperlukan untuk mengoptimumkan aplikasi yang memerlukan penyelenggaraan pesanan dinamik. Walaupun pembangun sepatutnya dapat melaksanakan struktur data ini dengan mudah, adalah bagus untuk menyediakan pelaksanaan yang mantap ini yang boleh digunakan terus-menerus tanpa mengalami mimpi ngeri tentang kotak sudut dalam perkhidmatan yang digunakan dalam pengeluaran. Pustaka terbina dalam Python dan modul pihak ketiga seperti sortedcontainers menyediakan penyelesaian yang serba boleh dan cekap untuk pelbagai masalah. Dengan memahami kekuatan dan pertukaran mereka, anda boleh memilih alatan yang betul untuk membina aplikasi yang berprestasi dan berskala.
Atas ialah kandungan terperinci Struktur Data Isih dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak
