


Panduan Komprehensif Permulaan untuk Generatif AI dengan LangChain dan Python - 3
Dec 30, 2024 am 01:11 AMAI Generatif membolehkan sistem mencipta teks, imej, kod atau bentuk kandungan lain berdasarkan data dan gesaan. LangChain ialah rangka kerja yang memudahkan kerja dengan model Generatif AI dengan mengatur aliran kerja, mengurus gesaan dan mendayakan keupayaan lanjutan seperti memori dan penyepaduan alat.
Panduan ini memperkenalkan konsep dan alatan utama yang diperlukan untuk bermula dengan Generative AI menggunakan LangChain dan Python.
1. Apakah itu LangChain?
LangChain ialah rangka kerja berasaskan Python untuk membina aplikasi dengan model bahasa besar (LLM) seperti model OpenAI GPT atau Hugging Face. Ia membantu:
- Urus Gesaan: Buat gesaan berstruktur yang boleh digunakan semula.
- Aliran Kerja Rantaian: Gabungkan berbilang panggilan LLM ke dalam satu aliran kerja.
- Gunakan Alat: Dayakan model AI untuk berinteraksi dengan API, pangkalan data dan banyak lagi.
- Tambah Memori: Benarkan model mengingati interaksi lalu.
2. Sediakan Persekitaran Anda
a) Pasang Perpustakaan yang Diperlukan
Untuk bermula, pasang LangChain dan perpustakaan berkaitan:
pip install langchain openai python-dotenv streamlit
b) Sediakan Kunci API OpenAI Anda
- Daftar untuk akaun OpenAI dan dapatkan kunci API anda: OpenAI API.
- Buat fail .env dalam direktori projek anda dan tambah kunci API anda:
OPENAI_API_KEY=your_api_key_here
- Muat kunci API dalam skrip Python anda menggunakan dotenv:
from dotenv import load_dotenv import os load_dotenv() openai_api_key = os.getenv("OPENAI_API_KEY")
3. Konsep Utama dalam LangChain
a) Gesaan
Gesaan membimbing AI untuk menjana output yang diingini. LangChain membolehkan anda menyusun gesaan secara sistematik menggunakan PromptTemplate.
from langchain.prompts import PromptTemplate # Define a template template = "You are an AI that summarizes text. Summarize the following: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) # Generate a prompt with dynamic input user_text = "Artificial Intelligence is a field of study that focuses on creating machines capable of intelligent behavior." formatted_prompt = prompt.format(text=user_text) print(formatted_prompt)
b) Model Bahasa
LangChain berintegrasi dengan LLM seperti model OpenAI GPT atau Hugging Face. Gunakan ChatOpenAI untuk OpenAI GPT.
from langchain.chat_models import ChatOpenAI # Initialize the model chat = ChatOpenAI(temperature=0.7, openai_api_key=openai_api_key) # Generate a response response = chat.predict("What is Generative AI?") print(response)
c) Rantai
Rantaian menggabungkan berbilang langkah atau tugasan ke dalam satu aliran kerja. Contohnya, rantai mungkin:
- Ringkaskan dokumen.
- Jana soalan berdasarkan ringkasan.
from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # Create a prompt and chain template = "Summarize the following text: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) chain = LLMChain(llm=chat, prompt=prompt) # Execute the chain result = chain.run("Generative AI refers to AI systems capable of creating text, images, or other outputs.") print(result)
d) Ingatan
Memori membolehkan model mengekalkan konteks melalui berbilang interaksi. Ini berguna untuk chatbots.
from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory # Initialize memory and the conversation chain memory = ConversationBufferMemory() conversation = ConversationChain(llm=chat, memory=memory) # Have a conversation print(conversation.run("Hi, who are you?")) print(conversation.run("What did I just ask you?"))
4. Contoh Aplikasi
a) Penjanaan Teks
Jana respons kreatif atau kandungan menggunakan gesaan.
from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate chat = ChatOpenAI(temperature=0.9, openai_api_key=openai_api_key) prompt = PromptTemplate(input_variables=["topic"], template="Write a poem about {topic}.") chain = LLMChain(llm=chat, prompt=prompt) # Generate a poem result = chain.run("technology") print(result)
b) Rumusan
Ringkaskan dokumen atau teks dengan cekap.
pip install langchain openai python-dotenv streamlit
c) Chatbots
Bina bot sembang interaktif dengan memori.
OPENAI_API_KEY=your_api_key_here
5. Ciri Lanjutan
a) Alat
Dayakan model untuk mengakses alatan luaran seperti carian web atau pangkalan data.
from dotenv import load_dotenv import os load_dotenv() openai_api_key = os.getenv("OPENAI_API_KEY")
b) Rantai Tersuai
Buat aliran kerja tersuai dengan menggabungkan berbilang tugas.
from langchain.prompts import PromptTemplate # Define a template template = "You are an AI that summarizes text. Summarize the following: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) # Generate a prompt with dynamic input user_text = "Artificial Intelligence is a field of study that focuses on creating machines capable of intelligent behavior." formatted_prompt = prompt.format(text=user_text) print(formatted_prompt)
6. Alokasi dengan Streamlit
Bina apl web ringkas untuk model AI Generatif anda menggunakan Streamlit.
Pasang Streamlit:
from langchain.chat_models import ChatOpenAI # Initialize the model chat = ChatOpenAI(temperature=0.7, openai_api_key=openai_api_key) # Generate a response response = chat.predict("What is Generative AI?") print(response)
Apl Mudah:
from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # Create a prompt and chain template = "Summarize the following text: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) chain = LLMChain(llm=chat, prompt=prompt) # Execute the chain result = chain.run("Generative AI refers to AI systems capable of creating text, images, or other outputs.") print(result)
Jalankan apl:
from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory # Initialize memory and the conversation chain memory = ConversationBufferMemory() conversation = ConversationChain(llm=chat, memory=memory) # Have a conversation print(conversation.run("Hi, who are you?")) print(conversation.run("What did I just ask you?"))
7. Konsep Utama untuk Pembangun AI Generatif
a) Model Penalaan Halus
Belajar untuk memperhalusi model seperti GPT atau Stable Diffusion pada set data tersuai.
b) Kejuruteraan Segera
Kuasai gesaan yang berkesan untuk mendapatkan output yang diingini.
c) AI Berbilang Modal
Kerja dengan model yang menggabungkan teks, imej dan modaliti lain (cth., DALL·E atau CLIP OpenAI).
d) Penskalaan dan Penggunaan
Terapkan model pada persekitaran pengeluaran menggunakan perkhidmatan awan atau alatan seperti Docker.
8. Sumber
- Dokumentasi LangChain: Dokumen LangChain
- API OpenAI: Dokumen OpenAI
- Model Muka Berpeluk: Muka Berpeluk
Dengan mengikuti panduan ini, anda akan memperoleh pengetahuan asas yang diperlukan untuk membina aplikasi AI Generatif dengan Python dan LangChain. Mulakan percubaan, bina aliran kerja dan selami dunia AI yang menarik!
Atas ialah kandungan terperinci Panduan Komprehensif Permulaan untuk Generatif AI dengan LangChain dan Python - 3. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak
