


Sistem Penyelenggaraan Ramalan Enjin Pesawat direka untuk memanfaatkan data sensor masa nyata daripada enjin pesawat untuk meramalkan bila penyelenggaraan diperlukan, meminimumkan masa henti yang tidak dirancang dan mengoptimumkan jadual penyelenggaraan . Dokumen ini memberikan gambaran keseluruhan terperinci tentang proses penempatan untuk sistem, meliputi seni bina timbunan penuh, persediaan Docker dan langkah untuk menggunakan aplikasi menggunakan Docker dan Docker Compose.
Jadual Kandungan
- Gambaran Keseluruhan Sistem
- Reka Bentuk Seni Bina
-
Menyediakan Bekas Docker
- Persediaan Karang Docker
- Fail Docker Bahagian Belakang dan Bahagian Depan
- Menjalankan Aplikasi
- Pertimbangan Penggunaan
- Kesimpulan
1. Gambaran Keseluruhan Sistem
Sistem ini terdiri daripada dua komponen utama:
- Frontend (Dash): Papan pemuka masa nyata yang dibina menggunakan Dash untuk menggambarkan hasil penyelenggaraan ramalan dan data penderia.
- Backend (Flask): API berasaskan Flask yang mengendalikan inferens model, memproses data sensor masuk dan mendedahkan titik akhir untuk ramalan dan analisis.
Bahagian belakang melaksanakan tugas kritikal untuk meramalkan keperluan penyelenggaraan berdasarkan data sejarah dan input penderia masa nyata. Bahagian hadapan memaparkan maklumat ini dalam format mesra pengguna, membolehkan pengendali mengambil tindakan tepat pada masanya dan meningkatkan kecekapan operasi.
2. Reka Bentuk Seni Bina
Bahagian belakang (Kelalang)
Halaman belakang ialah API RESTful yang dilaksanakan menggunakan Flask, direka untuk:
- Terima permintaan masuk dengan data penderia.
- Proses data ini menggunakan model pembelajaran mesin (mis., pengelasan atau regresi) untuk meramalkan keperluan penyelenggaraan.
- Dedahkan titik akhir yang boleh ditanya oleh bahagian hadapan untuk ramalan masa nyata dan analisis sejarah.
Bahagian Hadapan (Dash)
Halaman hadapan, dibina dengan Dash, berfungsi untuk tujuan:
- Memaparkan ramalan masa nyata, arah aliran dan visualisasi data lain.
- Membenarkan pengguna berinteraksi dengan ramalan dan memantau prestasi enjin.
- Membuat panggilan API ke bahagian belakang untuk mendapatkan maklumat terkini.
Kontena dengan Docker
Untuk menyelaraskan penggunaan dan memastikan aplikasi berjalan secara konsisten merentas persekitaran yang berbeza, kedua-dua bahagian hadapan dan bahagian belakang disimpan dalam bekas menggunakan Docker. Docker Compose digunakan untuk mentakrif dan mengurus persediaan berbilang bekas.
3. Menyediakan Bekas Docker
Persediaan Karang Docker
Fail docker-compose.yml mengatur penggunaan kedua-dua perkhidmatan frontend dan backend. Ia mentakrifkan cara membina dan memautkan bekas, serta cara mereka berkomunikasi antara satu sama lain melalui rangkaian tersuai. Di bawah ialah contoh fail docker-compose.yml yang mentakrifkan perkhidmatan:
version: '3.8' services: backend: build: context: . dockerfile: backend/Dockerfile ports: - "5000:5000" volumes: - ./data:/app/data networks: - app-network frontend: build: context: . dockerfile: frontend/Dockerfile ports: - "8050:8050" depends_on: - backend networks: - app-network networks: app-network: driver: bridge
Elemen utama:
- perkhidmatan bahagian belakang: Menjalankan Flask API pada port 5000 dan melekapkan direktori data untuk storan berterusan.
- perkhidmatan bahagian hadapan: Menjalankan apl Dash pada port 8050 dan bergantung pada bahagian belakang untuk bersedia sebelum bermula.
- rangkaian aplikasi: Rangkaian Docker tersuai yang membenarkan bahagian hadapan dan bahagian belakang berkomunikasi dengan selamat.
Backend Dockerfile (backend/Dockerfile)
Fail Docker ini membina bekas untuk perkhidmatan hujung belakang, yang menjalankan Flask API. Ia termasuk pemasangan kebergantungan Python dan menetapkan pembolehubah persekitaran yang diperlukan untuk menjalankan aplikasi Flask.
FROM python:3.9-slim WORKDIR /app COPY backend/requirements.txt /app/ RUN pip install --no-cache-dir -r requirements.txt COPY backend/ /app/ EXPOSE 5000 ENV FLASK_APP=app.py ENV FLASK_RUN_HOST=0.0.0.0 CMD ["flask", "run"]
Frontend Dockerfile (frontend/Dockerfile)
Perkhidmatan bahagian hadapan disimpan dalam bekas menggunakan fail Docker yang serupa. Fail ini menyediakan apl Dash dan mendedahkannya pada port 8050.
FROM python:3.9-slim WORKDIR /app COPY frontend/requirements.txt /app/ RUN pip install --no-cache-dir -r requirements.txt COPY frontend/ /app/ EXPOSE 8050 CMD ["python", "app.py"]
Elemen utama:
- Kedua-dua backend dan frontend Dockerfiles memasang kebergantungan yang diperlukan, salin kod aplikasi, dedahkan port masing-masing dan mulakan pelayan aplikasi apabila bekas dijalankan.
4. Menjalankan Aplikasi
Prasyarat
Sebelum menggunakan aplikasi, pastikan anda telah memasang yang berikut pada mesin anda:
- Docker: Alat yang membolehkan kontena.
- Karang Docker: Alat untuk mentakrif dan menjalankan aplikasi Docker berbilang bekas.
Langkah-langkah untuk Menjalankan Aplikasi
- Klon repositori: Mula-mula, klon repositori GitHub dan navigasi ke direktori projek.
git clone <repository_url> cd <project_directory>
- Bina dan mulakan perkhidmatan: Menggunakan Docker Compose, anda boleh membina dan memulakan kedua-dua perkhidmatan backend dan frontend secara serentak.
docker-compose up --build
-
Akses aplikasi:
Setelah bekas berjalan, anda boleh mengakses perkhidmatan berikut:- API Belakang: http://localhost:5000 Titik akhir ini akan menerima permintaan POST dengan data penderia dan ramalan penyelenggaraan pengembalian.
- Frontend (Dash): http://localhost:8050 Ini ialah papan pemuka interaktif yang akan menggambarkan ramalan penyelenggaraan, arah aliran dan cerapan lain dalam masa nyata.
Hentikan perkhidmatan:
Apabila anda selesai, anda boleh menghentikan perkhidmatan dengan menekan Ctrl C atau jalankan:
version: '3.8' services: backend: build: context: . dockerfile: backend/Dockerfile ports: - "5000:5000" volumes: - ./data:/app/data networks: - app-network frontend: build: context: . dockerfile: frontend/Dockerfile ports: - "8050:8050" depends_on: - backend networks: - app-network networks: app-network: driver: bridge
5. Pertimbangan Penggunaan
Walaupun Docker menyediakan persekitaran pembangunan dan ujian yang konsisten, terdapat pertimbangan tambahan untuk menggunakan sistem dalam persekitaran pengeluaran:
a) Menskalakan Aplikasi
Docker Compose sesuai untuk pembangunan dan ujian tempatan, tetapi untuk penggunaan pengeluaran, anda mungkin perlu menggunakan alat orkestra seperti Kubernetes untuk mengendalikan penskalaan dan pengurusan sumber. Kubernetes boleh menskalakan perkhidmatan bahagian hadapan dan bahagian belakang secara automatik berdasarkan permintaan trafik, memastikan ketersediaan yang tinggi dan toleransi kesalahan.
b) Pemantauan dan Pembalakan
Untuk memastikan sistem berjalan lancar dalam pengeluaran, integrasikan alat pemantauan seperti Prometheus dan sistem pembalakan seperti tindanan ELK (Elasticsearch, Logstash dan Kibana). Alat ini akan membolehkan anda menjejak prestasi sistem, mengesan isu dalam masa nyata dan menyelesaikan masalah dengan berkesan.
c) Pengurusan Model
Model penyelenggaraan ramalan yang digunakan di bahagian belakang mungkin memerlukan kemas kini berkala apabila data penderia baharu tersedia. Ia penting untuk:
- Pantau prestasi model untuk memastikan ketepatannya.
- Latih semula model secara berkala dengan data baharu.
- Model versi dan jejaki lelaran model untuk kebolehulangan.
d) Keselamatan
Untuk menjamin komunikasi antara hujung hadapan dan hujung belakang:
- Gunakan HTTPS dengan menyediakan sijil SSL, terutamanya jika anda menggunakan persekitaran pengeluaran.
- Laksanakan Penghadan kadar API dan mekanisme pengesahan (cth., token JWT) untuk mengelakkan penyalahgunaan API.
e) Penyepaduan dan Penerapan Berterusan (CI/CD)
Untuk penggunaan automatik, sepadukan saluran paip CI/CD menggunakan alatan seperti GitHub Actions, Jenkins atau GitLab CI. Saluran paip ini boleh membina, menguji dan menggunakan versi baharu aplikasi secara automatik apabila perubahan ditolak ke repositori.
6. Kesimpulan
Sistem Enjin Pesawat Penyelenggaraan Ramalan menyediakan penyelesaian komprehensif untuk memantau dan meramalkan keperluan penyelenggaraan dalam masa nyata. Dengan menggabungkan Flask untuk API bahagian belakang, Dash untuk visualisasi interaktif dan Docker untuk kontena, sistem ini menawarkan penyelesaian yang boleh dipercayai dan berskala yang boleh digunakan secara tempatan. dan dalam persekitaran pengeluaran.
Mengikut langkah yang digariskan dalam dokumen ini, anda boleh menggunakan aplikasi dengan mudah pada mesin tempatan anda atau menyediakannya untuk persekitaran pengeluaran. Dengan peningkatan selanjutnya, seperti penskalaan, pemantauan dan penggunaan berterusan, penyelesaian ini boleh berfungsi sebagai alat kritikal untuk mengoptimumkan operasi penyelenggaraan enjin pesawat.
Atas ialah kandungan terperinci Penggunaan Sistem Enjin Pesawat Penyelenggaraan Ramalan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak
