国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

? ??? ?? ??? ???? PyTorch? CocoDetection (3)

PyTorch? CocoDetection (3)

Jan 08, 2025 pm 02:13 PM

?? ?? ??????

*??:

  • ? ?????? captions_train2014.json, ????_train2014.json ? person_keypoints_train2014.json? ?? train2014, captions_val2014.json, ????_val2014.json ? person_keypoints_val2014.json? ?? val2014 ? image_info_test2014.json? ?? test2017? ???? CocoDetection()? ?? ?????. image_info_test2015.json ? image_info_test-dev2015.json.
  • ? ?????? captions_train2017.json, ????_train2017.json ? person_keypoints_train2017.json? ??? train2017, captions_val2017.json? ??? val2017, ????_val2017.json ? person_keypoints_val2017.json ? image_info_test2017.json? ??? test2017? ???? CocoDetection()? ?? ?????. image_info_test-dev2017.json.
  • ? ?? MS COCO? ?? ?????.

CocoDetection()? ??? ?? MS COCO ?????? ??? ? ????. *??? stuff_train2017.json? ??? train2017, stuff_val2017.json? ??? val2017, stuff_train2017.json? ??? stuff_train2017_pixelmaps, stuff_val2017.json? ??? stuff_val2017_pixelmaps, panoptic_train2017.json? ??? panoptic_train2017, panoptic_train2017.json? ??? panoptic_val2017? ?????. panoptic_val2017.json ? unlabeled2017(image_info_unlabeled2017.json ??):

from torchvision.datasets import CocoDetection

stf_train2017_data = CocoDetection(
    root="data/coco/imgs/train2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)

stf_val2017_data = CocoDetection(
    root="data/coco/imgs/val2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)

len(stf_train2017_data), len(stf_val2017_data)
# (118287, 5000)

# pms_stf_train2017_data = CocoDetection(
#     root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps",
#     annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
# ) # Error

# pms_stf_val2017_data = CocoDetection(
#     root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps",
#     annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
# ) # Error

# pan_train2017_data = CocoDetection(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_train2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json"
# ) # Error

# pan_val2017_data = CocoDetection(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_val2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json"
# ) # Error

unlabeled2017_data = CocoDetection(
    root="data/coco/imgs/unlabeled2017",
    annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json"
)

len(unlabeled2017_data)
# 123403

stf_train2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x428>,
#  [{'segmentation': {'counts': 'W2a0S2Q1T7mNmHS1R7mN...0100000000',
#    'size': [428, 640]}, 'area': 112666.0, 'iscrowd': 0, 'image_id': 30, 
#    'bbox': [0.0, 0.0, 640.0, 321.0], 'category_id': 119, 'id': 10000010},
#   {'segmentation': ..., 'category_id': 124, 'id': 10000011},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000014}])

stf_train2017_data[47]
# (<PIL.Image.Image image mode=RGB size=640x427>,
#  [{'segmentation': {'counts': '\\j1h0[<a0G2N001O0...00001O0000',
#    'size': [427, 640]}, 'area': 65213.0, 'iscrowd': 0, 'image_id': 294,
#    'bbox': [140.0, 0.0, 500.0, 326.0], 'category_id': 98, 'id': 10000284}, 
#   {'segmentation': ..., 'category_id': 123, 'id': 10000285},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000291}])

stf_train2017_data[64]
# (<PIL.Image.Image image mode=RGB size=480x640>,
#  [{'segmentation': {'counts': '0[9e:1O000000O100000...O5mc0F^Zj7',
#    'size': [640, 480]}, 'area': 20503.0, 'iscrowd': 0, 'image_id': 370,
#    'bbox': [0.0, 0.0, 79.0, 316.0], 'category_id': 102, 'id': 10000383},
#   {'segmentation': ..., 'category_id': 105, 'id': 10000384},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000389}])

stf_val2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x483>,
#  [{'segmentation': {'counts': '\9g5]9O1O1O;EU1kNU1...VMKQ?NY`d3',
#    'size': [483, 640]}, 'area': 5104.0, 'iscrowd': 0, 'image_id': 632,
#    'bbox': [0.0, 300.0, 392.0, 183.0], 'category_id': 93, 'id': 20000017},
#   {'segmentation': ..., 'category_id': 128, 'id': 20000018},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000020}])

stf_val2017_data[47]
# (<PIL.Image.Image image mode=RGB size=640x480>,
#  [{'segmentation': {'counts': '[da7T1X>D3M2J5M4M4LoQg1',
#    'size': [480, 640]}, 'area': 122.0, 'iscrowd': 0, 'image_id': 5001,
#    'bbox': [515.0, 235.0, 7.0, 36.0], 'category_id': 104, 'id': 20000247},
#   {'segmentation': ..., 'category_id': 105, 'id': 20000248},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000256}])

stf_val2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x483>,
#  [{'segmentation': {'counts': 'U<^1W>N020mN]B2e>N1O...Mb@N^?2hd2',
#    'size': [500, 375]}, 'area': 2404.0, 'iscrowd': 0, 'image_id': 6763,
#    'bbox': [0.0, 235.0, 369.0, 237.0], 'category_id': 105, 'id': 20000356},
#   {'segmentation': ..., 'category_id': 123, 'id': 20000357},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000362}])

unlabeled2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x427>, [])

unlabeled2017_data[47]
# (<PIL.Image.Image image mode=RGB size=428x640>, [])

unlabeled2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])

import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Rectangle
import numpy as np
from pycocotools import mask

# `show_images1()` doesn't work very well for the images with
# segmentations so for it, use `show_images2()` which
# more uses the original coco functions. 
def show_images1(data, ims, main_title=None):
    file = data.root.split('/')[-1]
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
    fig.suptitle(t=main_title, y=0.9, fontsize=14)
    for i, axis in zip(ims, axes.ravel()):
        if data[i][1] and "segmentation" in data[i][1][0]:
            im, anns = data[i]
            axis.imshow(X=im)
            axis.set_title(label=anns[0]["image_id"])
            ec = ['g', 'r', 'c', 'm', 'y', 'w']
            ec_index = 0
            for ann in anns:
                seg = ann['segmentation']
                compressed_rld = mask.decode(rleObjs=seg)
                y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld))
                axis.plot(x_plts, y_plts, alpha=0.4)
                x, y, w, h = ann['bbox']
                rect = Rectangle(xy=(x, y), width=w, height=h,
                                 linewidth=3, edgecolor=ec[ec_index],
                                 facecolor='none', zorder=2)
                ec_index += 1
                if ec_index == len(ec)-1:
                    ec_index = 0
                axis.add_patch(p=rect)
        elif not data[i][1]:
            im, _ = data[i]
            axis.imshow(X=im)
    fig.tight_layout()
    plt.show()

ims = (2, 47, 64)

show_images1(data=stf_train2017_data, ims=ims,
             main_title="stf_train2017_data")
show_images1(data=stf_val2017_data, ims=ims, 
             main_title="stf_val2017_data")
show_images1(data=unlabeled2017_data, ims=ims,
             main_title="unlabeled2017_data")

def show_images2(data, index, main_title=None):
    img_set = data[index]
    img, img_anns = img_set
    if img_anns and "segmentation" in img_anns[0]:
        img_id = img_anns[0]['image_id']
        coco = data.coco
        def show_image(imgIds, areaRng=[],
                       iscrowd=None, draw_bbox=False):
            plt.figure(figsize=(11, 8))
            plt.imshow(X=img)
            plt.suptitle(t=main_title, y=1, fontsize=14)
            plt.title(label=img_id, fontsize=14)
            anns_ids = coco.getAnnIds(imgIds=img_id,
                                      areaRng=areaRng, iscrowd=iscrowd)
            anns = coco.loadAnns(ids=anns_ids)
            coco.showAnns(anns=anns, draw_bbox=draw_bbox)
            plt.show()
        show_image(imgIds=img_id, draw_bbox=True)
        show_image(imgIds=img_id, draw_bbox=False)
        show_image(imgIds=img_id, iscrowd=False, draw_bbox=True)
        show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True)
    elif not img_anns:
        plt.figure(figsize=(11, 8))
        plt.imshow(X=img)
        plt.suptitle(t=main_title, y=1, fontsize=14)
        plt.show()

show_images2(data=stf_val2017_data, index=47, 
             main_title="stf_train2017_data")

show_images1():

Image description

Image description

Image description

show_images2():

Image description

Image description

Image description

Image description

? ??? PyTorch? CocoDetection (3)? ?? ?????. ??? ??? PHP ??? ????? ?? ?? ??? ?????!

? ????? ??
? ?? ??? ????? ???? ??? ??????, ???? ?????? ????. ? ???? ?? ???? ?? ??? ?? ????. ???? ??? ???? ???? ??? ?? admin@php.cn?? ?????.

? AI ??

Undresser.AI Undress

Undresser.AI Undress

???? ?? ??? ??? ?? AI ?? ?

AI Clothes Remover

AI Clothes Remover

???? ?? ???? ??? AI ?????.

Video Face Swap

Video Face Swap

??? ??? AI ?? ?? ??? ???? ?? ???? ??? ?? ????!

???

??? ??

???++7.3.1

???++7.3.1

???? ?? ?? ?? ???

SublimeText3 ??? ??

SublimeText3 ??? ??

??? ??, ???? ?? ????.

???? 13.0.1 ???

???? 13.0.1 ???

??? PHP ?? ?? ??

???? CS6

???? CS6

??? ? ?? ??

SublimeText3 Mac ??

SublimeText3 Mac ??

? ??? ?? ?? ?????(SublimeText3)

???

??? ??

?? ????
1783
16
Cakephp ????
1725
56
??? ????
1577
28
PHP ????
1440
31
???
Python? Unittest ?? Pytest ??? ??? ??? ??? ? ???? ?????? Python? Unittest ?? Pytest ??? ??? ??? ??? ? ???? ?????? Jun 19, 2025 am 01:10 AM

Python? Unittest ? Pytest? ??? ? ???? ??, ?? ? ??? ????? ? ?? ?? ???? ??? ??? ?????. 1. ??? ??? ?? ??? ???? ??? ??? ??? ?????. UnitTest? ??? ??? ???? ???? Test \ _? ???? ???? ?????. Pytest? ? ?????. Test \ _?? ???? ?? ? ??????. 2. ??? ?? ?? ? ?? ? ??? ??? ????. UnitTest? Assertequal, AssertTrue ? ?? ??? ???? ?? Pytest? ??? Assert ?? ???? ?? ?? ??? ???? ?????. 3. ?? ??? ?? ? ?? ????? ????? ????.

Numpy ? Pandas? ?? ??????? ??? ?? ? ??? Python? ??? ??? ? ????? Numpy ? Pandas? ?? ??????? ??? ?? ? ??? Python? ??? ??? ? ????? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationsfast, multi-dimensionalArraysandectorizedOferationsLikenp.sqrt ()

?? ????? ???? ???? Python?? ??? ?????? ?? ????? ???? ???? Python?? ??? ?????? Jun 20, 2025 am 12:57 AM

?? ????? (DP)? ??? ??? ? ??? ?? ??? ??? ??? ? ??? ??? ?? ??? ???? ??? ????? ??????. ? ?? ?? ??? ????. 1. ??? (??) : ??? ?? ??? ???? ??? ???? ?? ??? ??????. 2. ??? (?) : ?? ???? ???? ????? ?????. ???? ???, ?? ?? ?? ?? ??/?? ?, ??? ??? ?? ?? ?? ??? ??? ????? ?????. ?????? ????? ?? ???? ?? ??? ? ???, ?? ??? ???? ?? ?? ??? ???? ??? ???? ????? ???? ???????.

__iter__ ? __next__? ???? ????? ??? ?? ???? ??? ??? ? ????? __iter__ ? __next__? ???? ????? ??? ?? ???? ??? ??? ? ????? Jun 19, 2025 am 01:12 AM

??? ?? ???? ????? ????? __iter_ ? __next__ ???? ???????. ① __iter__ ???? ??? ? ?? ??? ???? ??? ?? ?? ??? ?????. ② __next__ ???? ? ??? ?? ????, ?? ??? ??? ????, ? ?? ??? ??? stopiteration ??? ??????. status ??? ???? ??????? ?? ??? ??? ?? ?? ??? ???????. pile ?? ?? ???? ?? ??? ?? ? ??? ?? ? ??? ?????? ?????. simple ??? ??? ?? ?? ??? ?? ???? ???? ?? ??? ? ??? ?? ????? ???? ??? ??? ???????.

Python ????? ??? ???? ??? ??? ?? ?? ??? ?????? Python ????? ??? ???? ??? ??? ?? ?? ??? ?????? Jun 19, 2025 am 01:09 AM

Python? ?? ???? ?? ???, ?? ?? ????, ?? ???? ?? ? AI/ML ??? ???? ??? ?????. ??, Cpython? ???? ????? ?? ??, ?? ?? ??? ? ?? ? ?? ??? ?? ??? ??????. ??, ??? ????? ?? ?? ? ?? ??? ????? ?? ?? ? ? ??? ?? ?????. ??, Pyscript ? Nuitka? ?? ?? ???? ??? ??? ?? ??? ?????. ?????, AI ? ??? ?? ??? ?? ???? ??? ?? ???????? ???? ?? ? ??? ?????. ??? ??? Python? ??? ??? ????? ???? ?? ??? ???? ??? ?????.

??? ???? ????? ???? ?????? ??? ?????? ??? ???? ????? ???? ?????? ??? ?????? Jun 20, 2025 am 12:56 AM

Python? ?? ??? ???? ?????? ????, ????? ? ?? ??????? ???? ? ??? ??? ???? ?? ??? ?????. ?? TCP ??? ????? Socket.Socket ()? ???? ??? ??? ?? ? ??? ????? .listen ()? ???? ??? ?? .accept ()? ?? ????? ??? ???????. TCP ?????? ????? ?? ??? ??? ??? ????? .connect ()? ?? ? ?? .sendall ()? ???? ???? ??? .recv ()? ?? ??? ??????. ?? ?????? ????? 1. ??? : ??? ??? ? ???? ??? ? ????. 2. ??? I/O : ?? ??, Asyncio ?????? ? ??? ??? ?? ? ? ????. ???? ? ?

??? ???? ??? ??? ???? ??? Jul 05, 2025 am 02:58 AM

???? Python ?? ?? ?????? ?? ????, "??? ?????, ?? ??"? ???? ??? ??? ??? ?? ??? ?????. 1. ???? ?? ? ??? ?? ?????. ?? ???? ?? ??? ???? ??? ? ? ????. ?? ??, Spoke () ?? ???? ??? ??? ?? ??? ?? ????? ?? ??? ??? ????. 2. ???? ?? ???? ??? ??? ?????? Draw () ???? ???? ????? ?? ???? ?? ??? ???? ??? ???? ?? ?? ?? ??? ????? ?? ?? ????? ?? ?????. 3. Python ?? ???? ???????. ?? ???? ??? ???? ?? ???? ??? ????? ??? ?? ???? ??? ???? ????. ??? ??? ??? ???? ? ??? "?? ??"??????. 4. ???? ? ???? ?? ??? ?????

Python?? ??? ??? ???????? Python?? ??? ??? ???????? Jun 20, 2025 am 12:51 AM

Python List ????? ?? ?? ??? [Start : End : Step] ??? ????? ??? ???? ????. 1. ?? ????? ?? ??? ?? [start : end : step]???. ??? ?? ??? (??), ?? ? ??? (???? ??)?? ??? ?? ?????. 2. ????? ???? 0?? ????? ???? ????? ??? ??? ???? ????? ??? 1? ??????. 3. my_list [: n]? ???? ? ?? n ??? ?? my_list [-n :]? ???? ??? n ??? ????. 4. My_List [:: 2]? ?? ??? ?? ?? ??? ???? ??? ??? ?? ?? ?? ??? ???? ? ????. 5. ???? ???? ? ???? ???? ????

See all articles