?? ?? ??????
*??:
- ? ?????? captions_train2014.json, ????_train2014.json ? person_keypoints_train2014.json? ?? train2014, captions_val2014.json, ????_val2014.json ? person_keypoints_val2014.json? ?? val2014 ? image_info_test2014.json? ?? test2017? ???? CocoDetection()? ?? ?????. image_info_test2015.json ? image_info_test-dev2015.json.
- ? ?????? captions_train2017.json, ????_train2017.json ? person_keypoints_train2017.json? ??? train2017, captions_val2017.json? ??? val2017, ????_val2017.json ? person_keypoints_val2017.json ? image_info_test2017.json? ??? test2017? ???? CocoDetection()? ?? ?????. image_info_test-dev2017.json.
- ? ?? MS COCO? ?? ?????.
CocoDetection()? ??? ?? MS COCO ?????? ??? ? ????. *??? stuff_train2017.json? ??? train2017, stuff_val2017.json? ??? val2017, stuff_train2017.json? ??? stuff_train2017_pixelmaps, stuff_val2017.json? ??? stuff_val2017_pixelmaps, panoptic_train2017.json? ??? panoptic_train2017, panoptic_train2017.json? ??? panoptic_val2017? ?????. panoptic_val2017.json ? unlabeled2017(image_info_unlabeled2017.json ??):
from torchvision.datasets import CocoDetection stf_train2017_data = CocoDetection( root="data/coco/imgs/train2017", annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" ) stf_val2017_data = CocoDetection( root="data/coco/imgs/val2017", annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" ) len(stf_train2017_data), len(stf_val2017_data) # (118287, 5000) # pms_stf_train2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" # ) # Error # pms_stf_val2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" # ) # Error # pan_train2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_train2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json" # ) # Error # pan_val2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_val2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json" # ) # Error unlabeled2017_data = CocoDetection( root="data/coco/imgs/unlabeled2017", annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json" ) len(unlabeled2017_data) # 123403 stf_train2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x428>, # [{'segmentation': {'counts': 'W2a0S2Q1T7mNmHS1R7mN...0100000000', # 'size': [428, 640]}, 'area': 112666.0, 'iscrowd': 0, 'image_id': 30, # 'bbox': [0.0, 0.0, 640.0, 321.0], 'category_id': 119, 'id': 10000010}, # {'segmentation': ..., 'category_id': 124, 'id': 10000011}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000014}]) stf_train2017_data[47] # (<PIL.Image.Image image mode=RGB size=640x427>, # [{'segmentation': {'counts': '\\j1h0[<a0G2N001O0...00001O0000', # 'size': [427, 640]}, 'area': 65213.0, 'iscrowd': 0, 'image_id': 294, # 'bbox': [140.0, 0.0, 500.0, 326.0], 'category_id': 98, 'id': 10000284}, # {'segmentation': ..., 'category_id': 123, 'id': 10000285}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000291}]) stf_train2017_data[64] # (<PIL.Image.Image image mode=RGB size=480x640>, # [{'segmentation': {'counts': '0[9e:1O000000O100000...O5mc0F^Zj7', # 'size': [640, 480]}, 'area': 20503.0, 'iscrowd': 0, 'image_id': 370, # 'bbox': [0.0, 0.0, 79.0, 316.0], 'category_id': 102, 'id': 10000383}, # {'segmentation': ..., 'category_id': 105, 'id': 10000384}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000389}]) stf_val2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x483>, # [{'segmentation': {'counts': '\9g5]9O1O1O;EU1kNU1...VMKQ?NY`d3', # 'size': [483, 640]}, 'area': 5104.0, 'iscrowd': 0, 'image_id': 632, # 'bbox': [0.0, 300.0, 392.0, 183.0], 'category_id': 93, 'id': 20000017}, # {'segmentation': ..., 'category_id': 128, 'id': 20000018}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000020}]) stf_val2017_data[47] # (<PIL.Image.Image image mode=RGB size=640x480>, # [{'segmentation': {'counts': '[da7T1X>D3M2J5M4M4LoQg1', # 'size': [480, 640]}, 'area': 122.0, 'iscrowd': 0, 'image_id': 5001, # 'bbox': [515.0, 235.0, 7.0, 36.0], 'category_id': 104, 'id': 20000247}, # {'segmentation': ..., 'category_id': 105, 'id': 20000248}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000256}]) stf_val2017_data[64] # (<PIL.Image.Image image mode=RGB size=640x483>, # [{'segmentation': {'counts': 'U<^1W>N020mN]B2e>N1O...Mb@N^?2hd2', # 'size': [500, 375]}, 'area': 2404.0, 'iscrowd': 0, 'image_id': 6763, # 'bbox': [0.0, 235.0, 369.0, 237.0], 'category_id': 105, 'id': 20000356}, # {'segmentation': ..., 'category_id': 123, 'id': 20000357}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000362}]) unlabeled2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x427>, []) unlabeled2017_data[47] # (<PIL.Image.Image image mode=RGB size=428x640>, []) unlabeled2017_data[64] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask # `show_images1()` doesn't work very well for the images with # segmentations so for it, use `show_images2()` which # more uses the original coco functions. def show_images1(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) for i, axis in zip(ims, axes.ravel()): if data[i][1] and "segmentation" in data[i][1][0]: im, anns = data[i] axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) ec = ['g', 'r', 'c', 'm', 'y', 'w'] ec_index = 0 for ann in anns: seg = ann['segmentation'] compressed_rld = mask.decode(rleObjs=seg) y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld)) axis.plot(x_plts, y_plts, alpha=0.4) x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor=ec[ec_index], facecolor='none', zorder=2) ec_index += 1 if ec_index == len(ec)-1: ec_index = 0 axis.add_patch(p=rect) elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (2, 47, 64) show_images1(data=stf_train2017_data, ims=ims, main_title="stf_train2017_data") show_images1(data=stf_val2017_data, ims=ims, main_title="stf_val2017_data") show_images1(data=unlabeled2017_data, ims=ims, main_title="unlabeled2017_data") def show_images2(data, index, main_title=None): img_set = data[index] img, img_anns = img_set if img_anns and "segmentation" in img_anns[0]: img_id = img_anns[0]['image_id'] coco = data.coco def show_image(imgIds, areaRng=[], iscrowd=None, draw_bbox=False): plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.title(label=img_id, fontsize=14) anns_ids = coco.getAnnIds(imgIds=img_id, areaRng=areaRng, iscrowd=iscrowd) anns = coco.loadAnns(ids=anns_ids) coco.showAnns(anns=anns, draw_bbox=draw_bbox) plt.show() show_image(imgIds=img_id, draw_bbox=True) show_image(imgIds=img_id, draw_bbox=False) show_image(imgIds=img_id, iscrowd=False, draw_bbox=True) show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True) elif not img_anns: plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.show() show_images2(data=stf_val2017_data, index=47, main_title="stf_train2017_data")
show_images1():
show_images2():
? ??? PyTorch? CocoDetection (3)? ?? ?????. ??? ??? PHP ??? ????? ?? ?? ??? ?????!

? AI ??

Undress AI Tool
??? ???? ??

Undresser.AI Undress
???? ?? ??? ??? ?? AI ?? ?

AI Clothes Remover
???? ?? ???? ??? AI ?????.

Clothoff.io
AI ? ???

Video Face Swap
??? ??? AI ?? ?? ??? ???? ?? ???? ??? ?? ????!

?? ??

??? ??

???++7.3.1
???? ?? ?? ?? ???

SublimeText3 ??? ??
??? ??, ???? ?? ????.

???? 13.0.1 ???
??? PHP ?? ?? ??

???? CS6
??? ? ?? ??

SublimeText3 Mac ??
? ??? ?? ?? ?????(SublimeText3)

??? ??











Python? Unittest ? Pytest? ??? ? ???? ??, ?? ? ??? ????? ? ?? ?? ???? ??? ??? ?????. 1. ??? ??? ?? ??? ???? ??? ??? ??? ?????. UnitTest? ??? ??? ???? ???? Test \ _? ???? ???? ?????. Pytest? ? ?????. Test \ _?? ???? ?? ? ??????. 2. ??? ?? ?? ? ?? ? ??? ??? ????. UnitTest? Assertequal, AssertTrue ? ?? ??? ???? ?? Pytest? ??? Assert ?? ???? ?? ?? ??? ???? ?????. 3. ?? ??? ?? ? ?? ????? ????? ????.

pythonisidealfordataanalysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationsfast, multi-dimensionalArraysandectorizedOferationsLikenp.sqrt ()

?? ????? (DP)? ??? ??? ? ??? ?? ??? ??? ??? ? ??? ??? ?? ??? ???? ??? ????? ??????. ? ?? ?? ??? ????. 1. ??? (??) : ??? ?? ??? ???? ??? ???? ?? ??? ??????. 2. ??? (?) : ?? ???? ???? ????? ?????. ???? ???, ?? ?? ?? ?? ??/?? ?, ??? ??? ?? ?? ?? ??? ??? ????? ?????. ?????? ????? ?? ???? ?? ??? ? ???, ?? ??? ???? ?? ?? ??? ???? ??? ???? ????? ???? ???????.

??? ?? ???? ????? ????? __iter_ ? __next__ ???? ???????. ① __iter__ ???? ??? ? ?? ??? ???? ??? ?? ?? ??? ?????. ② __next__ ???? ? ??? ?? ????, ?? ??? ??? ????, ? ?? ??? ??? stopiteration ??? ??????. status ??? ???? ??????? ?? ??? ??? ?? ?? ??? ???????. pile ?? ?? ???? ?? ??? ?? ? ??? ?? ? ??? ?????? ?????. simple ??? ??? ?? ?? ??? ?? ???? ???? ?? ??? ? ??? ?? ????? ???? ??? ??? ???????.

Python? ?? ???? ?? ???, ?? ?? ????, ?? ???? ?? ? AI/ML ??? ???? ??? ?????. ??, Cpython? ???? ????? ?? ??, ?? ?? ??? ? ?? ? ?? ??? ?? ??? ??????. ??, ??? ????? ?? ?? ? ?? ??? ????? ?? ?? ? ? ??? ?? ?????. ??, Pyscript ? Nuitka? ?? ?? ???? ??? ??? ?? ??? ?????. ?????, AI ? ??? ?? ??? ?? ???? ??? ?? ???????? ???? ?? ? ??? ?????. ??? ??? Python? ??? ??? ????? ???? ?? ??? ???? ??? ?????.

Python? ?? ??? ???? ?????? ????, ????? ? ?? ??????? ???? ? ??? ??? ???? ?? ??? ?????. ?? TCP ??? ????? Socket.Socket ()? ???? ??? ??? ?? ? ??? ????? .listen ()? ???? ??? ?? .accept ()? ?? ????? ??? ???????. TCP ?????? ????? ?? ??? ??? ??? ????? .connect ()? ?? ? ?? .sendall ()? ???? ???? ??? .recv ()? ?? ??? ??????. ?? ?????? ????? 1. ??? : ??? ??? ? ???? ??? ? ????. 2. ??? I/O : ?? ??, Asyncio ?????? ? ??? ??? ?? ? ? ????. ???? ? ?

???? Python ?? ?? ?????? ?? ????, "??? ?????, ?? ??"? ???? ??? ??? ??? ?? ??? ?????. 1. ???? ?? ? ??? ?? ?????. ?? ???? ?? ??? ???? ??? ? ? ????. ?? ??, Spoke () ?? ???? ??? ??? ?? ??? ?? ????? ?? ??? ??? ????. 2. ???? ?? ???? ??? ??? ?????? Draw () ???? ???? ????? ?? ???? ?? ??? ???? ??? ???? ?? ?? ?? ??? ????? ?? ?? ????? ?? ?????. 3. Python ?? ???? ???????. ?? ???? ??? ???? ?? ???? ??? ????? ??? ?? ???? ??? ???? ????. ??? ??? ??? ???? ? ??? "?? ??"??????. 4. ???? ? ???? ?? ??? ?????

Python List ????? ?? ?? ??? [Start : End : Step] ??? ????? ??? ???? ????. 1. ?? ????? ?? ??? ?? [start : end : step]???. ??? ?? ??? (??), ?? ? ??? (???? ??)?? ??? ?? ?????. 2. ????? ???? 0?? ????? ???? ????? ??? ??? ???? ????? ??? 1? ??????. 3. my_list [: n]? ???? ? ?? n ??? ?? my_list [-n :]? ???? ??? n ??? ????. 4. My_List [:: 2]? ?? ??? ?? ?? ??? ???? ??? ??? ?? ?? ?? ??? ???? ? ????. 5. ???? ???? ? ???? ???? ????
