国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

? ??? ?? ??? ???? ?? Granite? ??? ???.

?? Granite? ??? ???.

Oct 28, 2024 am 04:23 AM

I tried out Granite .

??? 3.0

Granite 3.0? ??? ?????? ?? ??? ?? ??? ??? ?? ?? ?? ?? ?? ??????. ??? ??, ??, ??, ?? ???? ????? ????? ?? ??? ?????.

? ??? ???? ?? ??? ??? ? ??? ???????.

????

Google Colab?? Granite 3.0 ??? ???? ?? ??? ???? ??? ?????? ??????.

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers

??

???? 3.0? 2B, 8B ?? ?? ??? ????????.

2B ??

2B??? ???????. 2B ??? ?? ??? ??? ????.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])

??

<|start_of_role|>user<|end_of_role|>Please list one IBM Research laboratory located in the United States. You should only output its name and location.<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>1. IBM Research - Austin, Texas<|end_of_text|>

8B ??

8B ??? 2b? 8b? ???? ??? ? ????. ??? 8B ??? ?? ?? ? ??? ?? ??? ?? ?? ?????.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, add_special_tokens=False, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

??

1. IBM Almaden Research Center - San Jose, California

?? ??

?? ?? ??? ???? ?? ??? ???????. ???? ?? ?? ???? ????? get_current_weather? ?????.

?? ??

import json

def get_current_weather(location: str) -> dict:
    """
    Retrieves current weather information for the specified location (default: San Francisco).
    Args:
        location (str): Name of the city to retrieve weather data for.
    Returns:
        dict: Dictionary containing weather information (temperature, description, humidity).
    """
    print(f"Getting current weather for {location}")

    try:
        weather_description = "sample"
        temperature = "20.0"
        humidity = "80.0"

        return {
            "description": weather_description,
            "temperature": temperature,
            "humidity": humidity
        }
    except Exception as e:
        print(f"Error fetching weather data: {e}")
        return {"weather": "NA"}

???? ??

?? ?? ????? ??????.

functions = [
    {
        "name": "get_current_weather",
        "description": "Get the current weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and country code, e.g. San Francisco, US",
                }
            },
            "required": ["location"],
        },
    },
]
query = "What's the weather like in Boston?"
payload = {
    "functions_str": [json.dumps(x) for x in functions]
}
chat = [
    {"role":"system","content": f"You are a helpful assistant with access to the following function calls. Your task is to produce a sequence of function calls necessary to generate response to the user utterance. Use the following function calls as required.{payload}"},
    {"role": "user", "content": query }
]

?? ??

?? ??? ???? ??? ??????.

instruction_1 = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(instruction_1, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

??

{'name': 'get_current_weather', 'arguments': {'location': 'Boston'}}

?? ?? ??? ??? ???? ??? ?? ??? ???? ??? ??? ???????.

??? ?? ?? ??? ?? ?? ??

Granite 3.0??? ?? ??? ?? ???? ???? ??? ???? ? ? ????. ? ????? ??? [UTTERANCE]? ???? ??? ??? [THINK]? ???? ??? ?????.

??, ?? ??? ?? ???? ????? ?? ??? ?? ??? ??? ???? ?? ??? ???? ??? ??? ? ????.

?? ?? ??

??? AI? ??? ???? ?? ???????.

prompt = """You are a conversational AI assistant that deepens interactions by alternating between responses and inner thoughts.
<Constraints>
* Record spoken responses after the [UTTERANCE] tag and inner thoughts after the [THINK] tag.
* Use [UTTERANCE] as a start marker to begin outputting an utterance.
* After [THINK], describe your internal reasoning or strategy for the next response. This may include insights on the user's reaction, adjustments to improve interaction, or further goals to deepen the conversation.
* Important: **Use [UTTERANCE] and [THINK] as a start signal without needing a closing tag.**
</Constraints>

Follow these instructions, alternating between [UTTERANCE] and [THINK] formats for responses.
<output example>
example1:
  [UTTERANCE]Hello! How can I assist you today?[THINK]I’ll start with a neutral tone to understand their needs. Preparing to offer specific suggestions based on their response.[UTTERANCE]Thank you! In that case, I have a few methods I can suggest![THINK]Since I now know what they’re looking for, I'll move on to specific suggestions, maintaining a friendly and approachable tone.
...
</output example>

Please respond to the following user_input.
<user_input>
Hello! What can you do?
</user_input>
"""

?? ?? ?

??? ???? ??:

chat = [
    { "role": "user", "content": prompt },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)

?? ??

??? ??? ????.

[UTTERANCE]Hello! I'm here to provide information, answer questions, and assist with various tasks. I can help with a wide range of topics, from general knowledge to specific queries. How can I assist you today?
[THINK]I've introduced my capabilities and offered assistance, setting the stage for the user to share their needs or ask questions.

[UTTERANCE] ? [THINK] ??? ????? ???? ???? ?? ??? ???????.

????? ?? ?? ??(?: [/UTTERANCE] ?? [/THINK])? ??? ??? ? ??? ?????? ????? ?? ??? ????? ??? ? ????.

???? ?? ?

???? ??? ???? ??? ???????.

?? ??? asyncio ? ??? ?????? ???? Granite 3.0? ??? ?????? ???????.

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers

?? ??

? ??? ???? ?? ??? ??? ??? ?????.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])

? ?? ???? ????? ?????. ? ??? ?????? ???? ????? ????? ???? ?? ??? ????? ? ? ????.

??

Granite 3.0? 8B ????? ??? ??? ???? ?????. ?? ?? ? ?? ?? ??? ?? ? ???? ???? ?? ??? ?? ???? ?????.

? ??? ?? Granite? ??? ???.? ?? ?????. ??? ??? PHP ??? ????? ?? ?? ??? ?????!

? ????? ??
? ?? ??? ????? ???? ??? ??????, ???? ?????? ????. ? ???? ?? ???? ?? ??? ?? ????. ???? ??? ???? ???? ??? ?? admin@php.cn?? ?????.

? AI ??

Undresser.AI Undress

Undresser.AI Undress

???? ?? ??? ??? ?? AI ?? ?

AI Clothes Remover

AI Clothes Remover

???? ?? ???? ??? AI ?????.

Video Face Swap

Video Face Swap

??? ??? AI ?? ?? ??? ???? ?? ???? ??? ?? ????!

???

??? ??

???++7.3.1

???++7.3.1

???? ?? ?? ?? ???

SublimeText3 ??? ??

SublimeText3 ??? ??

??? ??, ???? ?? ????.

???? 13.0.1 ???

???? 13.0.1 ???

??? PHP ?? ?? ??

???? CS6

???? CS6

??? ? ?? ??

SublimeText3 Mac ??

SublimeText3 Mac ??

? ??? ?? ?? ?????(SublimeText3)

???

??? ??

?? ????
1784
16
Cakephp ????
1729
56
??? ????
1580
28
PHP ????
1444
31
???
Python? Unittest ?? Pytest ??? ??? ??? ??? ? ???? ?????? Python? Unittest ?? Pytest ??? ??? ??? ??? ? ???? ?????? Jun 19, 2025 am 01:10 AM

Python? Unittest ? Pytest? ??? ? ???? ??, ?? ? ??? ????? ? ?? ?? ???? ??? ??? ?????. 1. ??? ??? ?? ??? ???? ??? ??? ??? ?????. UnitTest? ??? ??? ???? ???? Test \ _? ???? ???? ?????. Pytest? ? ?????. Test \ _?? ???? ?? ? ??????. 2. ??? ?? ?? ? ?? ? ??? ??? ????. UnitTest? Assertequal, AssertTrue ? ?? ??? ???? ?? Pytest? ??? Assert ?? ???? ?? ?? ??? ???? ?????. 3. ?? ??? ?? ? ?? ????? ????? ????.

Numpy ? Pandas? ?? ??????? ??? ?? ? ??? Python? ??? ??? ? ????? Numpy ? Pandas? ?? ??????? ??? ?? ? ??? Python? ??? ??? ? ????? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationsfast, multi-dimensionalArraysandectorizedOferationsLikenp.sqrt ()

?? ????? ???? ???? Python?? ??? ?????? ?? ????? ???? ???? Python?? ??? ?????? Jun 20, 2025 am 12:57 AM

?? ????? (DP)? ??? ??? ? ??? ?? ??? ??? ??? ? ??? ??? ?? ??? ???? ??? ????? ??????. ? ?? ?? ??? ????. 1. ??? (??) : ??? ?? ??? ???? ??? ???? ?? ??? ??????. 2. ??? (?) : ?? ???? ???? ????? ?????. ???? ???, ?? ?? ?? ?? ??/?? ?, ??? ??? ?? ?? ?? ??? ??? ????? ?????. ?????? ????? ?? ???? ?? ??? ? ???, ?? ??? ???? ?? ?? ??? ???? ??? ???? ????? ???? ???????.

__iter__ ? __next__? ???? ????? ??? ?? ???? ??? ??? ? ????? __iter__ ? __next__? ???? ????? ??? ?? ???? ??? ??? ? ????? Jun 19, 2025 am 01:12 AM

??? ?? ???? ????? ????? __iter_ ? __next__ ???? ???????. ① __iter__ ???? ??? ? ?? ??? ???? ??? ?? ?? ??? ?????. ② __next__ ???? ? ??? ?? ????, ?? ??? ??? ????, ? ?? ??? ??? stopiteration ??? ??????. status ??? ???? ??????? ?? ??? ??? ?? ?? ??? ???????. pile ?? ?? ???? ?? ??? ?? ? ??? ?? ? ??? ?????? ?????. simple ??? ??? ?? ?? ??? ?? ???? ???? ?? ??? ? ??? ?? ????? ???? ??? ??? ???????.

Python ????? ??? ???? ??? ??? ?? ?? ??? ?????? Python ????? ??? ???? ??? ??? ?? ?? ??? ?????? Jun 19, 2025 am 01:09 AM

Python? ?? ???? ?? ???, ?? ?? ????, ?? ???? ?? ? AI/ML ??? ???? ??? ?????. ??, Cpython? ???? ????? ?? ??, ?? ?? ??? ? ?? ? ?? ??? ?? ??? ??????. ??, ??? ????? ?? ?? ? ?? ??? ????? ?? ?? ? ? ??? ?? ?????. ??, Pyscript ? Nuitka? ?? ?? ???? ??? ??? ?? ??? ?????. ?????, AI ? ??? ?? ??? ?? ???? ??? ?? ???????? ???? ?? ? ??? ?????. ??? ??? Python? ??? ??? ????? ???? ?? ??? ???? ??? ?????.

??? ???? ????? ???? ?????? ??? ?????? ??? ???? ????? ???? ?????? ??? ?????? Jun 20, 2025 am 12:56 AM

Python? ?? ??? ???? ?????? ????, ????? ? ?? ??????? ???? ? ??? ??? ???? ?? ??? ?????. ?? TCP ??? ????? Socket.Socket ()? ???? ??? ??? ?? ? ??? ????? .listen ()? ???? ??? ?? .accept ()? ?? ????? ??? ???????. TCP ?????? ????? ?? ??? ??? ??? ????? .connect ()? ?? ? ?? .sendall ()? ???? ???? ??? .recv ()? ?? ??? ??????. ?? ?????? ????? 1. ??? : ??? ??? ? ???? ??? ? ????. 2. ??? I/O : ?? ??, Asyncio ?????? ? ??? ??? ?? ? ? ????. ???? ? ?

??? ???? ??? ??? ???? ??? Jul 05, 2025 am 02:58 AM

???? Python ?? ?? ?????? ?? ????, "??? ?????, ?? ??"? ???? ??? ??? ??? ?? ??? ?????. 1. ???? ?? ? ??? ?? ?????. ?? ???? ?? ??? ???? ??? ? ? ????. ?? ??, Spoke () ?? ???? ??? ??? ?? ??? ?? ????? ?? ??? ??? ????. 2. ???? ?? ???? ??? ??? ?????? Draw () ???? ???? ????? ?? ???? ?? ??? ???? ??? ???? ?? ?? ?? ??? ????? ?? ?? ????? ?? ?????. 3. Python ?? ???? ???????. ?? ???? ??? ???? ?? ???? ??? ????? ??? ?? ???? ??? ???? ????. ??? ??? ??? ???? ? ??? "?? ??"??????. 4. ???? ? ???? ?? ??? ?????

Python?? ??? ??? ???????? Python?? ??? ??? ???????? Jun 20, 2025 am 12:51 AM

Python List ????? ?? ?? ??? [Start : End : Step] ??? ????? ??? ???? ????. 1. ?? ????? ?? ??? ?? [start : end : step]???. ??? ?? ??? (??), ?? ? ??? (???? ??)?? ??? ?? ?????. 2. ????? ???? 0?? ????? ???? ????? ??? ??? ???? ????? ??? 1? ??????. 3. my_list [: n]? ???? ? ?? n ??? ?? my_list [-n :]? ???? ??? n ??? ????. 4. My_List [:: 2]? ?? ??? ?? ?? ??? ???? ??? ??? ?? ?? ?? ??? ???? ? ????. 5. ???? ???? ? ???? ???? ????

See all articles