


BeautifulSoup と Requests を使用して Python クローラーを使用して Web ページ データをクロールする方法
Apr 29, 2023 pm 12:52 PM1. はじめに
Web クローラーの実裝原理は次の手順に要約できます:
HTTP リクエストの送信: Web クローラーは HTTP リクエストを送信します。ターゲット Web サイトへ (通常は GET リクエスト) Web ページのコンテンツを取得します。 Python では、リクエスト ライブラリを使用して HTTP リクエストを送信できます。
HTML の解析: ターゲット Web サイトから応答を受信した後、クローラーは HTML コンテンツを解析して有用な情報(bào)を抽出する必要があります。 HTML は Web ページの構(gòu)造を記述するために使用されるマークアップ言語であり、一連のネストされたタグで構(gòu)成されます。クローラーは、これらのタグと屬性に基づいて必要なデータを見つけて抽出できます。 Python では、BeautifulSoup や lxml などのライブラリを使用して HTML を解析できます。
データ抽出: HTML を解析した後、クローラーは、事前に決定されたルールに従って必要なデータを抽出する必要があります。これらのルールは、タグ名、屬性、CSS セレクター、XPath などに基づくことができます。 Python では、BeautifulSoup はタグベースと屬性ベースのデータ抽出機(jī)能を提供し、lxml と cssselect は CSS セレクターと XPath を処理できます。
データ ストレージ: クローラーによってキャプチャされたデータは、通常、後続の処理のためにファイルまたはデータベースに保存する必要があります。 Python では、ファイル I/O 操作、csv ライブラリ、またはデータベース接続ライブラリ (sqlite3、pymysql、pymongo など) を使用して、データをローカル ファイルまたはデータベースに保存できます。
自動(dòng)走査: 多くの Web サイトのデータは複數(shù)のページに分散されているため、クローラーはこれらのページを自動(dòng)的に走査してデータを抽出する必要があります。通常、橫斷プロセスには、新しい URL の発見、ページのめくりなどが含まれます。クローラーは HTML の解析中に新しい URL を探し、それらをクロール対象のキューに追加し、上記の手順を続行します。
非同期および同時(shí)実行: クローラーの効率を向上させるために、非同期および同時(shí)実行テクノロジーを使用して複數(shù)のリクエストを同時(shí)に処理できます。 Python では、マルチスレッド (スレッド化)、マルチプロセス (マルチプロセッシング)、コルーチン (asyncio) およびその他のテクノロジを使用して、同時(shí)クロールを?qū)g現(xiàn)できます。
クローラー対策戦略と対応: 多くの Web サイトでは、アクセス速度の制限、ユーザー エージェント、検証コードの検出などのクローラー対策戦略が採(cǎi)用されています。これらの戦略に対処するために、クローラはプロキシ IP を使用し、ブラウザのユーザー エージェントをシミュレートし、検証コードやその他の技術(shù)を自動(dòng)的に識(shí)別する必要がある場(chǎng)合があります。 Python では、fake_useragent ライブラリを使用してランダムなユーザー エージェントを生成し、Selenium などのツールを使用してブラウザーの操作をシミュレートできます。
2. Web クローラーの基本概念
Web クローラーは、Web スパイダーまたは Web ロボットとも呼ばれ、Web サイトから Web ページ情報(bào)を自動(dòng)的にクロールするプログラムです。インターネット。クローラーは通常、特定のルールに従って Web ページにアクセスし、有用なデータを抽出します。
3. Beautiful Soup および Requests ライブラリの紹介
Beautiful Soup: HTML および XML ドキュメントを解析するための Python ライブラリで、Web からデータを抽出する簡(jiǎn)単な方法を提供します。ページ。
Requests: Web サイトにリクエストを送信し、応答コンテンツを取得するための、シンプルで使いやすい Python HTTP ライブラリです。
4. 対象の Web サイトを選択します
この記事では、Wikipedia のページを例として、ページ內(nèi)のタイトルと段落情報(bào)を取得します。例を単純化するために、Python 言語の Wikipedia ページ (https://en.wikipedia.org/wiki/Python_(programming_ language)) をクロールします。
5. リクエストを使用して Web コンテンツを取得します
まず、Requests ライブラリをインストールします:
pip install requests
次に、Requests を使用してターゲット URL に GET リクエストを送信し、Web ページの HTML コンテンツを取得します:
import requests url = "https://en.wikipedia.org/wiki/Python_(programming_language)" response = requests.get(url) html_content = response.text
6. Beautiful を使用します。 Web ページのコンテンツを解析するスープ
Beautiful Soup をインストールします:
pip install beautifulsoup4
次に、Beautiful Soup を使用して Web コンテンツを解析し、必要なデータを抽出します:
from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, "html.parser") # 提取標(biāo)題 title = soup.find("h2", class_="firstHeading").text # 提取段落 paragraphs = soup.find_all("p") paragraph_texts = [p.text for p in paragraphs] # 打印提取到的數(shù)據(jù) print("Title:", title) print("Paragraphs:", paragraph_texts)
7.必要なデータを保存してください
抽出したデータをテキスト ファイルに保存します:
with open("wiki_python.txt", "w", encoding="utf-8") as f: f.write(f"Title: {title}\n") f.write("Paragraphs:\n") for p in paragraph_texts: f.write(p) f.write("\n")
以上がBeautifulSoup と Requests を使用して Python クローラーを使用して Web ページ データをクロールする方法の詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國(guó)語 Web サイトの他の関連記事を參照してください。

ホットAIツール

Undress AI Tool
脫衣畫像を無料で

Undresser.AI Undress
リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover
寫真から衣服を削除するオンライン AI ツール。

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡(jiǎn)単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中國(guó)語版
中國(guó)語版、とても使いやすい

ゼンドスタジオ 13.0.1
強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ユーザー音聲入力がキャプチャされ、フロントエンドJavaScriptのMediareCorder APIを介してPHPバックエンドに送信されます。 2。PHPはオーディオを一時(shí)ファイルとして保存し、STTAPI(GoogleやBaiduの音聲認(rèn)識(shí)など)を呼び出してテキストに変換します。 3。PHPは、テキストをAIサービス(Openaigptなど)に送信して、インテリジェントな返信を取得します。 4。PHPは、TTSAPI(BaiduやGoogle Voice Synthesisなど)を呼び出して音聲ファイルに返信します。 5。PHPは、音聲ファイルをフロントエンドに戻し、相互作用を完了します。プロセス全體は、すべてのリンク間のシームレスな接続を確保するためにPHPによって支配されています。

AIによるテキストエラーの修正と構(gòu)文最適化を?qū)g現(xiàn)するには、次の手順に従う必要があります。1。Baidu、Tencent API、またはオープンソースNLPライブラリなどの適切なAIモデルまたはAPIを選択します。 2。PHPのカールまたはガズルを介してAPIを呼び出し、返品結(jié)果を処理します。 3.アプリケーションにエラー修正情報(bào)を表示し、ユーザーが採(cǎi)用するかどうかを選択できるようにします。 4.構(gòu)文の検出とコードの最適化には、PHP-LとPHP_CODESNIFFERを使用します。 5.フィードバックを継続的に収集し、モデルまたはルールを更新して効果を改善します。 AIAPIを選択するときは、PHPの精度、応答速度、価格、サポートの評(píng)価に焦點(diǎn)を當(dāng)てます。コードの最適化は、PSR仕様に従い、キャッシュを合理的に使用し、円形クエリを避け、定期的にコードを確認(rèn)し、Xを使用する必要があります。

Seabornのジョイントプロットを使用して、2つの変數(shù)間の関係と分布をすばやく視覚化します。 2。基本的な散布図は、sns.jointplot(data = tips、x = "total_bill"、y = "tip"、dind = "scatter")によって実裝され、中心は散布図であり、ヒストグラムは上部と右側(cè)と右側(cè)に表示されます。 3.回帰線と密度情報(bào)をdind = "reg"に追加し、marminal_kwsを組み合わせてエッジプロットスタイルを設(shè)定します。 4。データ量が大きい場(chǎng)合は、「ヘックス」を使用することをお?jiǎng)幛幛筏蓼埂?/p>

AIセンチメントコンピューティングテクノロジーをPHPアプリケーションに統(tǒng)合するために、COREはセンチメント分析にクラウドサービスAIAPI(Google、AWS、Azureなど)を使用し、HTTPリクエストを介してテキストを送信し、JSON結(jié)果を返し、データベースに感情的なデータを保存し、それによって自動(dòng)化された処理とユーザーフィードバックのデータ検査を?qū)g現(xiàn)することです。特定の手順には次のものが含まれます。1。正確性、コスト、言語サポート、統(tǒng)合の複雑さを考慮して、適切なAIセンチメント分析APIを選択します。 2。ガズルまたはカールを使用してリクエストを送信し、センチメントスコア、ラベル、および強(qiáng)度情報(bào)を保存します。 3。優(yōu)先順位の並べ替え、トレンド分析、製品の反復(fù)方向、ユーザーセグメンテーションをサポートする視覚的なダッシュボードを構(gòu)築します。 4。APIコールの制限や數(shù)などの技術(shù)的課題に対応する

文字列リストは、 '' .join(words)などのJoIn()メソッドとマージして、「Helloworldfrompython」を取得できます。 2。NUMBERリストは、參加する前にMAP(STR、數(shù)字)または[STR(x)forxinNumbers]を備えた文字列に変換する必要があります。 3.任意のタイプリストは、デバッグに適したブラケットと引用符のある文字列に直接変換できます。 4。カスタム形式は、 '|' .join(f "[{item}]" foriteminitems)output "[a] | [などのjoin()と組み合わせたジェネレーター式によって実裝できます。

pandas.melt()は、幅広い形式データを長(zhǎng)い形式に変換するために使用されます。答えは、ID_VARSを識(shí)別列を保持し、value_varsを溶かしてvar_nameおよびvalue_nameを選択する列を選択して、新しい列名を定義することです。列は1.id_vars = 'name'を意味します。 4.Value_Name = 'スコア'元の値の新しい列名を設(shè)定し、最後に名前、件名、スコアを含む3つの列を生成します。

Pythoncanbeoptimizedformemory-boundoperationsは、ヘッドゲネレーター、EfficientDataStructures、およびManagingObjectlifetimes.first、Usegeneratoratoratoratoratoratoraturatussを使用していることを確認(rèn)してください

Pyodbcのインストール:Pipinstallpyodbcコマンドを使用してライブラリをインストールします。 2.接続sqlserver:pyodbc.connect()メソッドを介して、ドライバー、サーバー、データベース、uid/pwdまたはtrusted_connectionを含む接続文字列を使用し、それぞれSQL認(rèn)証またはWindows認(rèn)証をサポートします。 3.インストールされているドライバーを確認(rèn)します:pyodbc.drivers()を?qū)g行し、「sqlserver」を含むドライバー名をフィルタリングして、「sqlserverのodbcdriver17」などの正しいドライバー名が使用されるようにします。 4.接続文字列の重要なパラメーター
