Matplotlib是基于Python語言的開源項(xiàng)目,其旨在為Python提供一個(gè)數(shù)據(jù)繪圖包,本文簡單介紹如何使用該程序包繪制漂亮的柱狀圖。
導(dǎo)入命令
1)設(shè)置工作環(huán)境%cd "F:\\Dropbox\\python"2)導(dǎo)入程序包import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib._png import read_png import matplotlib.colors from matplotlib.cbook import get_sample_data import pandas as pd3)讀取數(shù)據(jù)data=pd.read_csv("CAR.csv")4)定義并繪制圖像 class RibbonBox(object):original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",asfileobj=False))cut_location = 70 b_and_h = original_image[:,:,2] color = original_image[:,:,2] - original_image[:,:,0] alpha = original_image[:,:,3] nx = original_image.shape[1]def __init__(self, color): rgb = matplotlib.colors.colorConverter.to_rgb(color)im = np.empty(self.original_image.shape, self.original_image.dtype)im[:,:,:3] = self.b_and_h[:,:,np.newaxis] im[:,:,:3] -= self.color[:,:,np.newaxis]*(1.-np.array(rgb)) im[:,:,3] = self.alphaself.im = imdef get_stretched_image(self, stretch_factor): stretch_factor = max(stretch_factor, 1) ny, nx, nch = self.im.shape ny2 = int(ny*stretch_factor)stretched_image = np.empty((ny2, nx, nch), self.im.dtype) cut = self.im[self.cut_location,:,:] stretched_image[:,:,:] = cut stretched_image[:self.cut_location,:,:] = \ self.im[:self.cut_location,:,:] stretched_image[-(ny-self.cut_location):,:,:] = \ self.im[-(ny-self.cut_location):,:,:]self._cached_im = stretched_image return stretched_image class RibbonBoxImage(BboxImage): zorder = 1def __init__(self, bbox, color, cmap = None, norm = None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample = False, **kwargs ):BboxImage.__init__(self, bbox, cmap = cmap, norm = norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample = resample, **kwargs )self._ribbonbox = RibbonBox(color) self._cached_ny = Nonedef draw(self, renderer, *args, **kwargs):bbox = self.get_window_extent(renderer) stretch_factor = bbox.height / bbox.widthny = int(stretch_factor*self._ribbonbox.nx) if self._cached_ny != ny: arr = self._ribbonbox.get_stretched_image(stretch_factor) self.set_array(arr) self._cached_ny = nyBboxImage.draw(self, renderer, *args, **kwargs)if 1: from matplotlib.transforms import Bbox, TransformedBbox from matplotlib.ticker import ScalarFormatterfig, ax = plt.subplots()years = np.arange(2001,2008) box_colors = [(0.8, 0.2, 0.2), (0.2, 0.8, 0.2), (0.2, 0.2, 0.8), (0.7, 0.5, 0.8), (0.3, 0.8, 0.7), (0.4, 0.6, 0.3), (0.5, 0.5, 0.1), ] heights = data['price']fmt = ScalarFormatter(useOffset=False) ax.xaxis.set_major_formatter(fmt)for year, h, bc in zip(years, heights, box_colors): bbox0 = Bbox.from_extents(year-0.4, 0., year+0.4, h) bbox = TransformedBbox(bbox0, ax.transData) rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")ax.add_artist(rb_patch) ax.annotate(h, (year, h), va="bottom", ha="center") ax.set_title('The Price of Car')patch_gradient = BboxImage(ax.bbox, interpolation="bicubic", zorder=0.1, ) gradient = np.zeros((2, 2, 4), dtype=np.float) gradient[:,:,:3] = [1, 1, 0.] gradient[:,:,3] = [[0.1, 0.3],[0.3, 0.5]] patch_gradient.set_array(gradient) ax.add_artist(patch_gradient)ax.set_xlim(years[0]-0.5, years[-1]+0.5) ax.set_ylim(0, 15000)5)保存圖像fig.savefig('The Price of Car.png') plt.show()
輸出圖像如下
以上就是【Python教程】繪制漂亮的柱狀圖的內(nèi)容,更多相關(guān)內(nèi)容請(qǐng)關(guān)注PHP中文網(wǎng)(www.miracleart.cn)!

ホットAIツール

Undress AI Tool
脫衣畫像を無料で

Undresser.AI Undress
リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover
寫真から衣服を削除するオンライン AI ツール。

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中國語版
中國語版、とても使いやすい

ゼンドスタジオ 13.0.1
強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ユーザー音聲入力がキャプチャされ、フロントエンドJavaScriptのMediareCorder APIを介してPHPバックエンドに送信されます。 2。PHPはオーディオを一時(shí)ファイルとして保存し、STTAPI(GoogleやBaiduの音聲認(rèn)識(shí)など)を呼び出してテキストに変換します。 3。PHPは、テキストをAIサービス(Openaigptなど)に送信して、インテリジェントな返信を取得します。 4。PHPは、TTSAPI(BaiduやGoogle Voice Synthesisなど)を呼び出して音聲ファイルに返信します。 5。PHPは、音聲ファイルをフロントエンドに戻し、相互作用を完了します。プロセス全體は、すべてのリンク間のシームレスな接続を確保するためにPHPによって支配されています。

AIによるテキストエラーの修正と構(gòu)文最適化を?qū)g現(xiàn)するには、次の手順に従う必要があります。1。Baidu、Tencent API、またはオープンソースNLPライブラリなどの適切なAIモデルまたはAPIを選択します。 2。PHPのカールまたはガズルを介してAPIを呼び出し、返品結(jié)果を処理します。 3.アプリケーションにエラー修正情報(bào)を表示し、ユーザーが採用するかどうかを選択できるようにします。 4.構(gòu)文の検出とコードの最適化には、PHP-LとPHP_CODESNIFFERを使用します。 5.フィードバックを継続的に収集し、モデルまたはルールを更新して効果を改善します。 AIAPIを選択するときは、PHPの精度、応答速度、価格、サポートの評(píng)価に焦點(diǎn)を當(dāng)てます。コードの最適化は、PSR仕様に従い、キャッシュを合理的に使用し、円形クエリを避け、定期的にコードを確認(rèn)し、Xを使用する必要があります。

Seabornのジョイントプロットを使用して、2つの変數(shù)間の関係と分布をすばやく視覚化します。 2?;镜膜噬⒉紘恧稀ns.jointplot(data = tips、x = "total_bill"、y = "tip"、dind = "scatter")によって実裝され、中心は散布図であり、ヒストグラムは上部と右側(cè)と右側(cè)に表示されます。 3.回帰線と密度情報(bào)をdind = "reg"に追加し、marminal_kwsを組み合わせてエッジプロットスタイルを設(shè)定します。 4。データ量が大きい場合は、「ヘックス」を使用することをお?jiǎng)幛幛筏蓼埂?/p>

AIセンチメントコンピューティングテクノロジーをPHPアプリケーションに統(tǒng)合するために、COREはセンチメント分析にクラウドサービスAIAPI(Google、AWS、Azureなど)を使用し、HTTPリクエストを介してテキストを送信し、JSON結(jié)果を返し、データベースに感情的なデータを保存し、それによって自動(dòng)化された処理とユーザーフィードバックのデータ検査を?qū)g現(xiàn)することです。特定の手順には次のものが含まれます。1。正確性、コスト、言語サポート、統(tǒng)合の複雑さを考慮して、適切なAIセンチメント分析APIを選択します。 2。ガズルまたはカールを使用してリクエストを送信し、センチメントスコア、ラベル、および強(qiáng)度情報(bào)を保存します。 3。優(yōu)先順位の並べ替え、トレンド分析、製品の反復(fù)方向、ユーザーセグメンテーションをサポートする視覚的なダッシュボードを構(gòu)築します。 4。APIコールの制限や數(shù)などの技術(shù)的課題に対応する

文字列リストは、 '' .join(words)などのJoIn()メソッドとマージして、「Helloworldfrompython」を取得できます。 2。NUMBERリストは、參加する前にMAP(STR、數(shù)字)または[STR(x)forxinNumbers]を備えた文字列に変換する必要があります。 3.任意のタイプリストは、デバッグに適したブラケットと引用符のある文字列に直接変換できます。 4。カスタム形式は、 '|' .join(f "[{item}]" foriteminitems)output "[a] | [などのjoin()と組み合わせたジェネレーター式によって実裝できます。

Pyodbcのインストール:Pipinstallpyodbcコマンドを使用してライブラリをインストールします。 2.接続sqlserver:pyodbc.connect()メソッドを介して、ドライバー、サーバー、データベース、uid/pwdまたはtrusted_connectionを含む接続文字列を使用し、それぞれSQL認(rèn)証またはWindows認(rèn)証をサポートします。 3.インストールされているドライバーを確認(rèn)します:pyodbc.drivers()を?qū)g行し、「sqlserver」を含むドライバー名をフィルタリングして、「sqlserverのodbcdriver17」などの正しいドライバー名が使用されるようにします。 4.接続文字列の重要なパラメーター

pandas.melt()は、幅広い形式データを長い形式に変換するために使用されます。答えは、ID_VARSを識(shí)別列を保持し、value_varsを溶かしてvar_nameおよびvalue_nameを選択する列を選択して、新しい列名を定義することです。列は1.id_vars = 'name'を意味します。 4.Value_Name = 'スコア'元の値の新しい列名を設(shè)定し、最後に名前、件名、スコアを含む3つの列を生成します。

Pythoncanbeoptimizedformemory-boundoperationsは、ヘッドゲネレーター、EfficientDataStructures、およびManagingObjectlifetimes.first、Usegeneratoratoratoratoratoratoraturatussを使用していることを確認(rèn)してください
