国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル Python でのプロセス管理: 並列プログラミングの基礎(chǔ)

Python でのプロセス管理: 並列プログラミングの基礎(chǔ)

Jan 03, 2025 am 09:52 AM

Process Management in Python: Fundamentals of Parallel Programming

並列プログラミングは、プログラムが複數(shù)のプロセッサまたはコアで複數(shù)のタスクを同時(shí)に実行できるようにするプログラミング モデルです。このモデルは、プロセッサ リソースをより効率的に使用し、処理時(shí)間を短縮し、パフォーマンスを向上させることを目的としています。

並列プログラミングを畫像で説明すると、問題があると想像できます。並列処理を開始する前に、この問題を小さな部分に分割します。これらのサブパートは互いに獨(dú)立しており、お互いについて何も知らないと仮定します。各サブ問題は、より小さなタスクまたは指示に変換されます。これらのタスクは、並行作業(yè)に適した方法で編成されています。たとえば、データセットに対して同じ操作を?qū)g行するために多くの命令を作成できます。これらのタスクはさまざまなプロセッサに分散されます。各プロセッサは、割り當(dāng)てられた命令を獨(dú)立して並行して処理します。このプロセスにより、総処理時(shí)間が大幅に短縮され、リソースをより効率的に使用できるようになります。

Python では、並列プログラミング用のツールとモジュールがいくつか提供されています。

**マルチプロセッシング
**これにより、プログラムは複數(shù)のプロセスを同時(shí)に実行できるようになり、真の並列処理を活用できるようになります。マルチプロセッシング モジュールは GIL (グローバル インタープリター ロック) の制限を克服し、マルチコア プロセッサーで最大限のパフォーマンスを?qū)g現(xiàn)できます。

グローバル インタプリタ ロック (GIL) は、CPython と呼ばれる Python の一般的な実裝で使用されるメカニズムです。 GIL では、一度に 1 つのスレッドのみが Python バイトコードを?qū)g行できます。これは、Python でマルチスレッドが使用される場合に真の並列処理を制限する構(gòu)造です。

*正方形と立方體の計(jì)算例
*

from multiprocessing import Process

def print_square(numbers):
    for n in numbers:
        print(f"Square of {n} is {n * n}")

def print_cube(numbers):
    for n in numbers:
        print(f"Cube of {n} is {n * n * n}")

if __name__ == "__main__":
    numbers = [2, 3, 4, 5]  

    # ??lemler (processes) olu?turma
    process1 = Process(target=print_square, args=(numbers,))
    process2 = Process(target=print_cube, args=(numbers,))

    # ??lemleri ba?latma
    process1.start()
    process2.start()

    # ??lemlerin tamamlanmas?n? bekleme
    process1.join()
    process2.join()

マルチプロセッシングが必要な理由 マルチプロセッシングの必要性は、料理人やキッチンに例えて説明できます。料理人がキッチンで一人で調(diào)理することを単一プロセス プログラムと考えることができます。複數(shù)の料理人が同じキッチンで一緒に作業(yè)することを、マルチプロセッシングに例えることができます。

単一プロセス - 単一調(diào)理

キッチンには調(diào)理人が 1 人だけです。この料理人は前菜、メインコース、デザートの 3 つの異なる料理を作ります。各料理は順番に作られます:
彼はスターターを準(zhǔn)備して完成させます。
彼はメインコースに進(jìn)み、それを終了します。
最後にデザートを作ります。
問題:

料理人がどんなに早くても、交代で調(diào)理するため、キッチンでの時(shí)間が無駄になります。
3 つの異なる料理を同時(shí)に調(diào)理する必要がある場合は、時(shí)間が長くなります。
マルチプロセッシング - 多くのクック

次に、同じキッチンに 3 人の料理人がいると想像してください。それぞれが異なる料理を準(zhǔn)備しています:
一人の料理人がスターターを作ります。
2 番目の料理人がメインコースを準(zhǔn)備します。
3人目の料理人がデザートを作ります。
利點(diǎn):

3 つの料理が同時(shí)に作られるため、合計(jì)時(shí)間が大幅に短縮されます。
各クックは獨(dú)立して獨(dú)自の作業(yè)を?qū)g行し、他のクックの影響を受けません。
Python でプロセス間でデータを共有する
Python では、multiprocessing モジュールを使用して、異なるプロセス間でデータを共有することができます。ただし、各プロセスは獨(dú)自のメモリ空間を使用します。したがって、プロセス間でデータを共有するために特別なメカニズムが使用されます。

from multiprocessing import Process

def print_square(numbers):
    for n in numbers:
        print(f"Square of {n} is {n * n}")

def print_cube(numbers):
    for n in numbers:
        print(f"Cube of {n} is {n * n * n}")

if __name__ == "__main__":
    numbers = [2, 3, 4, 5]  

    # ??lemler (processes) olu?turma
    process1 = Process(target=print_square, args=(numbers,))
    process2 = Process(target=print_cube, args=(numbers,))

    # ??lemleri ba?latma
    process1.start()
    process2.start()

    # ??lemlerin tamamlanmas?n? bekleme
    process1.join()
    process2.join()

コードサンプルを調(diào)べると、結(jié)果リストが空であることがわかります。この主な理由は、マルチプロセッシングで作成されたプロセスがメイン プロセスから獨(dú)立した獨(dú)自のメモリ空間で動(dòng)作するためです。この獨(dú)立性のため、子プロセスで行われた変更は、メイン プロセスの変數(shù)に直接反映されません。

Python には、データを共有するための次のメソッドが用意されています。

**1.共有メモリ
**Value オブジェクトと Array オブジェクトは、操作間でデータを共有するために使用されます。
値: 単一のデータ型 (數(shù)値など) を共有します。
配列: データの配列を共有するために使用されます。

import multiprocessing

result = []

def square_of_list(mylist):
    for num in mylist:
        result.append(num**2)
    return result

mylist= [1,3,4,5]

p1 = multiprocessing.Process(target=square_of_list,args=(mylist,))
p1.start()
p1.join()

print(result) # [] Bo? Liste

**2.キュー
**FIFO (先入れ先出し) 構(gòu)造を使用してプロセス間でデータを転送します。
multiprocessing.Queue を使用すると、複數(shù)のプロセスがデータを送受信できるようになります。

from multiprocessing import Process, Value

def increment(shared_value):
    for _ in range(1000):
        shared_value.value += 1  

if __name__ == "__main__":
    shared_value = Value('i', 0)  
    processes = [Process(target=increment, args=(shared_value,)) for _ in range(5)]

    for p in processes:
        p.start()
    for p in processes:
        p.join()

    print(f"Sonu?: {shared_value.value}")

**3.パイプ
**multiprocessing.Pipe は、2 つのプロセス間の雙方向のデータ転送を提供します。
データの送信と受信の両方に使用できます。

from multiprocessing import Process, Queue

def producer(queue):
    for i in range(5):
        queue.put(i)  # Kuyru?a veri ekle
        print(f"üretildi: {i}")

def consumer(queue):
    while not queue.empty():
        item = queue.get()  
        print(f"Tüketildi: {item}")

if __name__ == "__main__":
    queue = Queue()

    producer_process = Process(target=producer, args=(queue,))
    consumer_process = Process(target=consumer, args=(queue,))

    producer_process.start()
    producer_process.join()

    consumer_process.start()
    consumer_process.join()

*プロセス間のパディング
*
「プロセス間のパディング」は、プロセス メモリの編成や、複數(shù)のプロセス間で共有されるデータにアクセスする際のデータの配置や衝突の問題を回避するためによく使用されます。

この概念は、キャッシュラインのフォールス シェアリングなどの場合に特に重要です。複數(shù)のプロセスが同時(shí)に共有メモリを使用しようとすると、誤った共有によりパフォーマンスの低下が発生する可能性があります。これは、最新のプロセッサでのキャッシュラインの共有が原因です。

**プロセス間の同期
**Python のマルチプロセッシング モジュールを使用すると、複數(shù)のプロセスを同時(shí)に実行できます。ただし、複數(shù)のプロセスが同じデータにアクセスする必要がある場合は、同期を使用することが重要です。これは、データの一貫性を確保し、競合狀態(tài)などの問題を回避するために必要です。

from multiprocessing import Process, Pipe

def send_data(conn):
    conn.send([1, 2, 3, 4])  
    conn.close()

if __name__ == "__main__":
    parent_conn, child_conn = Pipe()  

    process = Process(target=send_data, args=(child_conn,))
    process.start()

    print(f"Al?nan veri: {parent_conn.recv()}")  # Veri al
    process.join()

ロックにより、一度に 1 つのプロセスのみが共有データにアクセスできます。
ロックを使用しているプロセスが完了する前に、他のプロセスが待機(jī)します。

**マルチスレッド

マルチスレッドは、プログラムで複數(shù)のスレッドを同時(shí)に実行できるようにする並列プログラミング モデルです。スレッドは、同じプロセス內(nèi)で実行される小さな獨(dú)立したコード単位であり、リソースを共有することでより高速かつ効率的な処理を目指します。
Python では、マルチスレッド アプリケーションの開発にスレッド モジュールが使用されます。ただし、Python の Global Interpreter Lock (GIL) メカニズムにより、マルチスレッドでは CPU に依存するタスクのパフォーマンスが制限されます。したがって、一般に、I/O バウンドのタスクではマルチスレッドが推奨されます。

スレッドはプログラム內(nèi)の一連の命令です。

from multiprocessing import Process

def print_square(numbers):
    for n in numbers:
        print(f"Square of {n} is {n * n}")

def print_cube(numbers):
    for n in numbers:
        print(f"Cube of {n} is {n * n * n}")

if __name__ == "__main__":
    numbers = [2, 3, 4, 5]  

    # ??lemler (processes) olu?turma
    process1 = Process(target=print_square, args=(numbers,))
    process2 = Process(target=print_cube, args=(numbers,))

    # ??lemleri ba?latma
    process1.start()
    process2.start()

    # ??lemlerin tamamlanmas?n? bekleme
    process1.join()
    process2.join()

**スレッド同期
**スレッド同期は、複數(shù)のスレッドが同じリソースに同時(shí)にアクセスするときに、データの一貫性と順序を確保するために使用される技術(shù)です。 Python では、スレッド モジュールは同期用のツールをいくつか提供します。

**スレッド同期が必要な理由
**競合狀況:

2 つ以上のスレッドが共有リソースに同時(shí)にアクセスすると、データの不整合が発生する可能性があります。
たとえば、あるスレッドがデータを読み取りながら、別のスレッドが同じデータを更新する場合があります。
*データの一貫性:
*

共有リソースが正しく更新されるようにするには、スレッド間の調(diào)整が必要です。
Python での同期ツールの例
**1.ロック
**スレッドはロックを取得すると、他のスレッドが同じリソースにアクセスできるようになる前に、ロックが解放されるのを待ちます。

import multiprocessing

result = []

def square_of_list(mylist):
    for num in mylist:
        result.append(num**2)
    return result

mylist= [1,3,4,5]

p1 = multiprocessing.Process(target=square_of_list,args=(mylist,))
p1.start()
p1.join()

print(result) # [] Bo? Liste

2-イベント

from multiprocessing import Process, Value

def increment(shared_value):
    for _ in range(1000):
        shared_value.value += 1  

if __name__ == "__main__":
    shared_value = Value('i', 0)  
    processes = [Process(target=increment, args=(shared_value,)) for _ in range(5)]

    for p in processes:
        p.start()
    for p in processes:
        p.join()

    print(f"Sonu?: {shared_value.value}")

**結(jié)論:
**スレッドの同期は、スレッドが共有リソースにアクセスするときにデータの不整合を防ぐために重要です。 Python では、Lock、RLock、Semaphore、Event、Condition などのツールが、同期のニーズに応じた効果的なソリューションを提供します。どのツールを使用するかは、アプリケーションのニーズと同期要件によって異なります。

以上がPython でのプロセス管理: 並列プログラミングの基礎(chǔ)の詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PythonでAPI認(rèn)証を処理する方法 PythonでAPI認(rèn)証を処理する方法 Jul 13, 2025 am 02:22 AM

API認(rèn)証を扱うための鍵は、認(rèn)証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認(rèn)証方法です。 2。BasicAuthは、內(nèi)部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動(dòng)的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報(bào)を安全に保存することが重要です。

Pythonの主張を説明します。 Pythonの主張を説明します。 Jul 07, 2025 am 12:14 AM

Assertは、Pythonでデバッグに使用されるアサーションツールであり、條件が満たされないときにアサーションエラーを投げます。その構(gòu)文は、アサート條件とオプションのエラー情報(bào)であり、パラメーターチェック、ステータス確認(rèn)などの內(nèi)部ロジック検証に適していますが、セキュリティまたはユーザーの入力チェックには使用できず、明確な迅速な情報(bào)と組み合わせて使用??する必要があります。例外処理を置き換えるのではなく、開発段階での補(bǔ)助デバッグにのみ利用できます。

Pythonタイプのヒントとは何ですか? Pythonタイプのヒントとは何ですか? Jul 07, 2025 am 02:55 AM

タイプヒントシンパソコンの問題と、ポテンシャルを使用して、dynamivitytedcodedededevelowingdeexpecifeedtypes.theyenhanceReadeadability、inableearlybugdetection、およびrequrovetoolingsusingsupport.typehintsareadddeduneadddedusingolon(:)

一度に2つのリストを繰り返す方法Python 一度に2つのリストを繰り返す方法Python Jul 09, 2025 am 01:13 AM

Pythonで2つのリストを同時(shí)にトラバースする一般的な方法は、Zip()関數(shù)を使用することです。これは、複數(shù)のリストを順番にペアリングし、最短になります。リストの長さが一貫していない場合は、itertools.zip_longest()を使用して最長になり、欠損値を入力できます。 enumerate()と組み合わせて、同時(shí)にインデックスを取得できます。 1.Zip()は簡潔で実用的で、ペアのデータ反復(fù)に適しています。 2.zip_longest()は、一貫性のない長さを扱うときにデフォルト値を入力できます。 3. Enumerate(Zip())は、トラバーサル中にインデックスを取得し、さまざまな複雑なシナリオのニーズを満たすことができます。

Python Iteratorsとは何ですか? Python Iteratorsとは何ですか? Jul 08, 2025 am 02:56 AM

inpython、iteratoratorSareObjectsthatallopingthroughcollectionsbyimplementing __()and__next __()

Python Fastapiチュートリアル Python Fastapiチュートリアル Jul 12, 2025 am 02:42 AM

Pythonを使用して最新の効率的なAPIを作成するには、Fastapiをお?jiǎng)幛幛筏蓼?。?biāo)準(zhǔn)のPythonタイプのプロンプトに基づいており、優(yōu)れたパフォーマンスでドキュメントを自動(dòng)的に生成できます。 FastAPIおよびASGIサーバーUVICORNをインストールした後、インターフェイスコードを記述できます。ルートを定義し、処理機(jī)能を作成し、データを返すことにより、APIをすばやく構(gòu)築できます。 Fastapiは、さまざまなHTTPメソッドをサポートし、自動(dòng)的に生成されたSwaggeruiおよびRedocドキュメントシステムを提供します。 URLパラメーターはパス定義を介してキャプチャできますが、クエリパラメーターは、関數(shù)パラメーターのデフォルト値を設(shè)定することで実裝できます。 Pydanticモデルの合理的な使用は、開発の効率と精度を改善するのに役立ちます。

Python仮想環(huán)境のセットアップと使用 Python仮想環(huán)境のセットアップと使用 Jul 06, 2025 am 02:56 AM

仮想環(huán)境は、さまざまなプロジェクトの依存関係を分離できます。 Python獨(dú)自のvenvモジュールを使用して作成されたコマンドは、python-mvenvenvです。アクティベーション方法:WindowsはEnv \ Scripts \ Activateを使用し、MacOS/LinuxはSourceENV/Bin/Activateを使用します。インストールパッケージでは、pipinstallを使用し、pipfreeze> requincement.txtを使用して要件ファイルを生成し、pipinstall-rrequirements.txtを使用して環(huán)境を復(fù)元します。注意事項(xiàng)には、GITに提出しない、新しい端末が開かれるたびに再アクティブ化すること、およびIDEが自動(dòng)識(shí)別と切り替えを使用することが含まれます。

PythonでAPIをテストする方法 PythonでAPIをテストする方法 Jul 12, 2025 am 02:47 AM

APIをテストするには、Pythonのリクエストライブラリを使用する必要があります。手順は、ライブラリのインストール、リクエストの送信、応答の確認(rèn)、タイムアウトの設(shè)定、再試行です。まず、pipinstallRequestsを介してライブラリをインストールします。次に、requests.get()またはrequests.post()およびその他のメソッドを使用して、get requestsを送信または投稿します。次に、respons.status_codeとresponse.json()を確認(rèn)して、返品結(jié)果が期待に準(zhǔn)拠していることを確認(rèn)します。最後に、タイムアウトパラメーターを追加してタイムアウト時(shí)間を設(shè)定し、再試行ライブラリを組み合わせて自動(dòng)再生を?qū)g現(xiàn)して安定性を高めます。

See all articles