国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル Pandas でデータをグループ化および合計して、顧客および果物の種類ごとに購入総額を計算するにはどうすればよいですか?

Pandas でデータをグループ化および合計して、顧客および果物の種類ごとに購入総額を計算するにはどうすればよいですか?

Dec 25, 2024 pm 02:55 PM

How Can I Group and Sum Data in Pandas to Calculate Total Purchases by Customer and Fruit Type?

Pandas でのデータのグループ化と合計

データ分析では、意味のある洞察を得るために特定の基準に従ってデータを集計することが必要になることがよくあります。データ操作用の強力な Python ライブラリである Pandas は、1 つ以上の列に基づいてデータをグループ化する groupby() メソッドを提供します。このメソッドを sum() などの集計関數(shù)と組み合わせて、各グループの集計値を計算できます。

グループごとの値の合計の計算

次のように仮定します。個人による果物の消費に関する情報を含むデータフレームを持っています。各行は、果物の種類、購入日、顧客名、購入した果物の數(shù)を含む果物の購入を表します。

各個人が購入した果物の合計數(shù)を、果物の種類と顧客名の両方でグループ化して計算します。

ステップ 1: データをグループ化する

まず、両方で DataFrame をグループ化します。 groupby() メソッドを使用した 'Fruit' 列と 'Name' 列:

df_grouped = df.groupby(['Fruit', 'Name'])

これにより、グループ化されたデータを表す SeriesGroupBy オブジェクトが作成されます。

ステップ 2: 適用Sum 関數(shù)

各グループが購入した果物の総數(shù)を計算するには、グループ化されたシリーズへの sum() 関數(shù):

df_grouped_sum = df_grouped['Number'].sum()

結果のシリーズ df_grouped_sum には、果物の種類と顧客名の固有の組み合わせごとに果物購入の合計が含まれます。

次のことを考えてみましょうDataFrame:

   Fruit   Date      Name  Number
Apples  10/6/2016 Bob    7
Apples  10/6/2016 Bob    8
Apples  10/6/2016 Mike   9
Apples  10/7/2016 Steve 10
Apples  10/7/2016 Bob    1
Oranges 10/7/2016 Bob    2
Oranges 10/6/2016 Tom   15
Oranges 10/6/2016 Mike  57
Oranges 10/6/2016 Bob   65
Oranges 10/7/2016 Tony   1
Grapes  10/7/2016 Bob    1
Grapes  10/7/2016 Tom   87
Grapes  10/7/2016 Bob   22
Grapes  10/7/2016 Bob   12
Grapes  10/7/2016 Tony  15

この DataFrame に groupby() および sum() 操作を適用すると、次の結果が得られます:

                 Number
Fruit   Name         
Apples  Bob        16
        Mike        9
        Steve      10
Grapes  Bob        35
        Tom        87
        Tony       15
Oranges Bob        67
        Mike       57
        Tom        15
        Tony        1

この出力は、によって購入されたフルーツの合計數(shù)を示しています。それぞれの個體を果物の種類ごとに分類します。

以上がPandas でデータをグループ化および合計して、顧客および果物の種類ごとに購入総額を計算するにはどうすればよいですか?の詳細內容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當する法的責任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を実裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Python関數(shù)引數(shù)とパラメーター Python関數(shù)引數(shù)とパラメーター Jul 04, 2025 am 03:26 AM

パラメーターは関數(shù)を定義するときはプレースホルダーであり、引數(shù)は呼び出し時に特定の値が渡されます。 1。位置パラメーターを順番に渡す必要があり、順序が正しくない場合は結果のエラーにつながります。 2。キーワードパラメーターはパラメーター名で指定されており、順序を変更して読みやすさを向上させることができます。 3.デフォルトのパラメーター値は、複製コードを避けるために定義されたときに割り當てられますが、変數(shù)オブジェクトはデフォルト値として避ける必要があります。 4. Argsおよび *Kwargsは、不確実な數(shù)のパラメーターを処理でき、一般的なインターフェイスまたはデコレータに適していますが、読みやすさを維持するためには注意して使用する必要があります。

Pythonジェネレーターと反復器を説明します。 Pythonジェネレーターと反復器を説明します。 Jul 05, 2025 am 02:55 AM

イテレータは、__iter __()および__next __()メソッドを実裝するオブジェクトです。ジェネレーターは、単純化されたバージョンのイテレーターです。これは、収量キーワードを介してこれらのメソッドを自動的に実裝しています。 1. Iteratorは、次の()を呼び出すたびに要素を返し、要素がなくなると停止例外をスローします。 2。ジェネレーターは関數(shù)定義を使用して、オンデマンドでデータを生成し、メモリを保存し、無限シーケンスをサポートします。 3。既存のセットを処理するときに反復器を使用すると、大きなファイルを読み取るときに行ごとにロードするなど、ビッグデータや怠zyな評価を動的に生成するときにジェネレーターを使用します。注:リストなどの反復オブジェクトは反復因子ではありません。イテレーターがその端に達した後、それらは再作成する必要があり、発電機はそれを一度しか通過できません。

python `@classmethod`デコレーターが説明しました python `@classmethod`デコレーターが説明しました Jul 04, 2025 am 03:26 AM

クラスメソッドは、@ClassMethodデコレーターを介してPythonで定義されるメソッドです。最初のパラメーターはクラス自體(CLS)で、クラス狀態(tài)へのアクセスまたは変更に使用されます。特定のインスタンスではなく、クラス全體に影響を與えるクラスまたはインスタンスを通じて呼び出すことができます。たとえば、Personクラスでは、show_count()メソッドは作成されたオブジェクトの數(shù)を數(shù)えます。クラスメソッドを定義するときは、@ClassMethodデコレータを使用して、Change_Var(new_Value)メソッドなどの最初のパラメーターCLSに名前を付けてクラス変數(shù)を変更する必要があります。クラス方法は、インスタンスメソッド(自己パラメーター)および靜的メソッド(自動パラメーターなし)とは異なり、工場の方法、代替コンストラクター、およびクラス変數(shù)の管理に適しています。一般的な用途には以下が含まれます。

PythonでAPI認証を処理する方法 PythonでAPI認証を処理する方法 Jul 13, 2025 am 02:22 AM

API認証を扱うための鍵は、認証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認証方法です。 2。BasicAuthは、內部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報を安全に保存することが重要です。

Python Magic MethodsまたはDunder Methodとは何ですか? Python Magic MethodsまたはDunder Methodとは何ですか? Jul 04, 2025 am 03:20 AM

PythonのMagicMethods(またはDunder Methods)は、オブジェクトの動作を定義するために使用される特別な方法であり、二重のアンダースコアで始まり、終了します。 1.オブジェクトは、追加、比較、文字列表現(xiàn)などの組み込み操作に応答できるようにします。 2.一般的なユースケースには、オブジェクトの初期化と表現(xiàn)(__init__、__Repr__、__str__)、算術操作(__ add__、__sub__、__mul__)、および比較操作(__eq__、___lt__)が含まれます。 3。それを使用するときは、彼らの行動が期待を満たしていることを確認してください。たとえば、__Repr__はリファクタリング可能なオブジェクトの式を返す必要があり、算術メソッドは新しいインスタンスを返す必要があります。 4.過剰使用または混亂を招くことは避ける必要があります。

Pythonメモリ管理はどのように機能しますか? Pythonメモリ管理はどのように機能しますか? Jul 04, 2025 am 03:26 AM

PythonManagesMemoryAutomatelyUsingTuntingAndagarBageCollector.ReferencountingTrackShowManyvariablesRefertoAnobject、およびThemeMoryisfreed.

PythonのPython Garbage Collectionを説明してください。 PythonのPython Garbage Collectionを説明してください。 Jul 03, 2025 am 02:07 AM

Pythonのごみ収集メカニズムは、參照カウントと定期的なごみ収集を通じてメモリを自動的に管理します。そのコアメソッドは參照カウントであり、オブジェクトの參照の數(shù)がゼロになるとすぐにメモリを解放します。ただし、円形の參照を処理できないため、ループを検出してクリーニングするために、Garbage Collection Module(GC)が導入されています。通常、ガベージコレクションは、プログラムの操作中に參照カウントが減少したときにトリガーされます。割り當てとリリースの差がしきい値を超える、またはgc.collect()が手動で呼ばれるときにトリガーされます。ユーザーは、gc.disable()を介して自動リサイクルをオフにし、gc.collect()を手動で実行し、gc.set_threshold()を介して制御を実現(xiàn)するためにしきい値を調整できます。すべてのオブジェクトがループリサイクルに參加するわけではありません。參照が含まれていないオブジェクトが參照カウントによって処理されている場合、それは組み込まれています

See all articles