国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development C++ Is Atomic Read-Modify-Write a Single Atomic Operation or a Separable One?

Is Atomic Read-Modify-Write a Single Atomic Operation or a Separable One?

Dec 18, 2024 pm 08:16 PM

Is Atomic Read-Modify-Write a Single Atomic Operation or a Separable One?

Is Atomic Read-Modify-Write an Atomic or Separable Operation?

atomic read-modify-write (RMW) operations, such as x.exchange(), are atomic operations that both read and write a memory location and ensure that the read and write operations are executed in order. However, it's not explicitly defined whether these operations are considered a single atomic operation or a combination of an acquire load and a release store.

The Standard's Perspective

From the C standard's perspective, an RMW operation is considered a single operation. This is evident from the fact that it has a single name (RMW) and is referred to as a single operation by the standard. For example, [N4860](https://isocpp.org/files/papers/n4860.pdf) (Draft Working Paper std::memory_order) states:

"A read-modify-write operation with this memory order is both an acquire operation and a release operation. No memory reads or writes in the current thread can be reordered before or after this store."

Atomic vs. Separable Operations

The distinction between atomic and separable operations is important because it determines how other operations interact with them. If an RMW operation is treated as atomic, it means that it cannot bereordered with respect to other memory accesses. However, if it's treated as separable, it opens up the possibility of reordering between the load and store components of the operation.

Example Code

Consider the following code example, which uses x.exchange() and y.store() to set the values of two atomic variables, x and y.

std::atomic<int> x, y;

void thread_A() {
    x.exchange(1, std::memory_order_acq_rel);
    y.store(1, std::memory_order_relaxed);
}

void thread_B() {
    int yy = y.load(std::memory_order_acquire);
    int xx = x.load(std::memory_order_acquire);
    std::cout << xx << ", " << yy << std::endl;
}

If x.exchange() is treated as a single atomic operation, it means that the load and store components of the operation cannot be reordered. Therefore, Thread B will always observe the values of x and y to be both 1 or both 0.

However, if x.exchange() is treated as separable, it leaves open the possibility that the load and store components of the operation could be reordered. In this case, Thread B could potentially observe the values of x and y to be 0, 1, as the load from x could be reordered before the store to y.

Compiler Implementation and Standard Interpretation

Based on the standard's perspective, it would seem that Thread B should not observe 0, 1. However, the ARM64 implementation of the code suggests that the RMW operation is treated as separable, allowing for the possibility of reordering between the load and store components.

This apparent discrepancy raises the question of whether the cppreference quote is incorrect or if it's simply a misunderstanding of the standard. While it's possible that the cppreference quote is not perfectly accurate, it aligns with the standard's general treatment of RMW operations as single atomic operations.

It's important to note that the standard does not explicitly define the behavior of RMW operations under all circumstances. In particular, it does not provide clear guidance on how synchronizes-with relationships apply to RMW operations. As such, there may be room for different interpretations and implementations of RMW operations.

The above is the detailed content of Is Atomic Read-Modify-Write a Single Atomic Operation or a Separable One?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C   Polymorphism : is function overloading a kind of polymorphism? C Polymorphism : is function overloading a kind of polymorphism? Jun 20, 2025 am 12:05 AM

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

What Are the Different Kinds of Polymorphism in C  ? Explained What Are the Different Kinds of Polymorphism in C ? Explained Jun 20, 2025 am 12:08 AM

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

C  : Is Polymorphism really useful? C : Is Polymorphism really useful? Jun 20, 2025 am 12:01 AM

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C   Destructors: Common Errors C Destructors: Common Errors Jun 20, 2025 am 12:12 AM

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

Polymorphism in C  : A Comprehensive Guide with Examples Polymorphism in C : A Comprehensive Guide with Examples Jun 21, 2025 am 12:11 AM

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C   tutorial for people who know Python C tutorial for people who know Python Jul 01, 2025 am 01:11 AM

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

What Are the Various Forms of Polymorphism in C  ? What Are the Various Forms of Polymorphism in C ? Jun 20, 2025 am 12:21 AM

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C   Polymorphism: Coding Style C Polymorphism: Coding Style Jun 19, 2025 am 12:25 AM

C polymorphismisuniqueduetoitscombinationofcompile-timeandruntimepolymorphism,allowingforbothefficiencyandflexibility.Toharnessitspowerstylishly:1)Usesmartpointerslikestd::unique_ptrformemorymanagement,2)Ensurebaseclasseshavevirtualdestructors,3)Emp

See all articles