国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル LangGraph ステート マシン: 本番環(huán)境での複雑なエージェント タスク フローの管理

LangGraph ステート マシン: 本番環(huán)境での複雑なエージェント タスク フローの管理

Nov 24, 2024 am 03:37 AM

LangGraph State Machines: Managing Complex Agent Task Flows in Production

ランググラフとは何ですか?

LangGraph は、LLM アプリケーション専用に設(shè)計されたワークフロー オーケストレーション フレームワークです。その中心原則は次のとおりです:

  • 複雑なタスクを狀態(tài)と遷移に分割する
  • 狀態(tài)遷移ロジックの管理
  • タスク実行時のさまざまな例外の処理

ショッピングについて考えてみましょう: 閲覧 → カートに追加 → チェックアウト → 支払い。 LangGraph は、こ??のようなワークフローを効率的に管理するのに役立ちます。

中心となる概念

1. 州

狀態(tài)はタスク実行におけるチェックポイントのようなものです:

from typing import TypedDict, List

class ShoppingState(TypedDict):
    # Current state
    current_step: str
    # Cart items
    cart_items: List[str]
    # Total amount
    total_amount: float
    # User input
    user_input: str

class ShoppingGraph(StateGraph):
    def __init__(self):
        super().__init__()

        # Define states
        self.add_node("browse", self.browse_products)
        self.add_node("add_to_cart", self.add_to_cart)
        self.add_node("checkout", self.checkout)
        self.add_node("payment", self.payment)

2. 狀態(tài)遷移

狀態(tài)遷移は、タスク フローの「ロードマップ」を定義します。

class ShoppingController:
    def define_transitions(self):
        # Add transition rules
        self.graph.add_edge("browse", "add_to_cart")
        self.graph.add_edge("add_to_cart", "browse")
        self.graph.add_edge("add_to_cart", "checkout")
        self.graph.add_edge("checkout", "payment")

    def should_move_to_cart(self, state: ShoppingState) -> bool:
        """Determine if we should transition to cart state"""
        return "add to cart" in state["user_input"].lower()

3. 狀態(tài)の永続性

システムの信頼性を確保するには、狀態(tài)情報を永続化する必要があります。

class StateManager:
    def __init__(self):
        self.redis_client = redis.Redis()

    def save_state(self, session_id: str, state: dict):
        """Save state to Redis"""
        self.redis_client.set(
            f"shopping_state:{session_id}",
            json.dumps(state),
            ex=3600  # 1 hour expiration
        )

    def load_state(self, session_id: str) -> dict:
        """Load state from Redis"""
        state_data = self.redis_client.get(f"shopping_state:{session_id}")
        return json.loads(state_data) if state_data else None

4. エラー回復(fù)メカニズム

どのステップでも失敗する可能性があるため、次のような狀況に適切に対処する必要があります。

class ErrorHandler:
    def __init__(self):
        self.max_retries = 3

    async def with_retry(self, func, state: dict):
        """Function execution with retry mechanism"""
        retries = 0
        while retries < self.max_retries:
            try:
                return await func(state)
            except Exception as e:
                retries += 1
                if retries == self.max_retries:
                    return self.handle_final_error(e, state)
                await self.handle_retry(e, state, retries)

    def handle_final_error(self, error, state: dict):
        """Handle final error"""
        # Save error state
        state["error"] = str(error)
        # Rollback to last stable state
        return self.rollback_to_last_stable_state(state)

実世界の例: インテリジェントな顧客サービス システム

実際的な例を見てみましょう - インテリジェントな顧客サービス システム:

from langgraph.graph import StateGraph, State

class CustomerServiceState(TypedDict):
    conversation_history: List[str]
    current_intent: str
    user_info: dict
    resolved: bool

class CustomerServiceGraph(StateGraph):
    def __init__(self):
        super().__init__()

        # Initialize states
        self.add_node("greeting", self.greet_customer)
        self.add_node("understand_intent", self.analyze_intent)
        self.add_node("handle_query", self.process_query)
        self.add_node("confirm_resolution", self.check_resolution)

    async def greet_customer(self, state: State):
        """Greet customer"""
        response = await self.llm.generate(
            prompt=f"""
            Conversation history: {state['conversation_history']}
            Task: Generate appropriate greeting
            Requirements:
            1. Maintain professional friendliness
            2. Acknowledge returning customers
            3. Ask how to help
            """
        )
        state['conversation_history'].append(f"Assistant: {response}")
        return state

    async def analyze_intent(self, state: State):
        """Understand user intent"""
        response = await self.llm.generate(
            prompt=f"""
            Conversation history: {state['conversation_history']}
            Task: Analyze user intent
            Output format:
            {{
                "intent": "refund/inquiry/complaint/other",
                "confidence": 0.95,
                "details": "specific description"
            }}
            """
        )
        state['current_intent'] = json.loads(response)
        return state

使用法

# Initialize system
graph = CustomerServiceGraph()
state_manager = StateManager()
error_handler = ErrorHandler()

async def handle_customer_query(user_id: str, message: str):
    # Load or create state
    state = state_manager.load_state(user_id) or {
        "conversation_history": [],
        "current_intent": None,
        "user_info": {},
        "resolved": False
    }

    # Add user message
    state["conversation_history"].append(f"User: {message}")

    # Execute state machine flow
    try:
        result = await graph.run(state)
        # Save state
        state_manager.save_state(user_id, result)
        return result["conversation_history"][-1]
    except Exception as e:
        return await error_handler.with_retry(
            graph.run,
            state
        )

ベストプラクティス

  1. 狀態(tài)設(shè)計原則

    • 狀態(tài)をシンプルかつ明確に保ちます
    • 必要な情報のみを保存
    • シリアル化要件を考慮する
  2. 遷移ロジックの最適化

    • 條件付き遷移を使用する
    • 無限ループを避ける
    • 最大歩數(shù)制限を設(shè)定する
  3. エラー処理戦略

    • 正常な劣化を?qū)g裝する
    • ログの詳細(xì)情報
    • ロールバックメカニズムを提供する
  4. パフォーマンスの最適化

    • 非同期操作を使用する
    • 狀態(tài)キャッシュを?qū)g裝する
    • 狀態(tài)サイズの制御

よくある落とし穴と解決策

  1. 狀態(tài)爆発

    • 問題: 狀態(tài)が多すぎるとメンテナンスが困難になります
    • 解決策: 類似した狀態(tài)をマージし、新しい狀態(tài)を作成する代わりに狀態(tài)の組み合わせを使用します
  2. デッドロック狀況

    • 問題: 循環(huán)狀態(tài)遷移によりタスクがハングする
    • 解決策: タイムアウトメカニズムと強(qiáng)制終了條件を追加します
  3. 狀態(tài)の一貫性

    • 問題: 分散環(huán)境における一貫性のない狀態(tài)
    • 解決策: 分散ロックとトランザクション メカニズムを使用します

まとめ

LangGraph ステート マシンは、複雑な AI エージェント タスク フローを管理するための強(qiáng)力なソリューションを提供します。

  • 明確なタスクフロー管理
  • 信頼性の高い狀態(tài)の永続性
  • 包括的なエラー処理
  • 柔軟な拡張性

以上がLangGraph ステート マシン: 本番環(huán)境での複雑なエージェント タスク フローの管理の詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? 動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? Jun 20, 2025 am 12:57 AM

動的プログラミング(DP)は、複雑な問題をより単純なサブ問題に分解し、結(jié)果を保存して繰り返し計算を回避することにより、ソリューションプロセスを最適化します。主な方法は2つあります。1。トップダウン(暗記):問題を再帰的に分解し、キャッシュを使用して中間結(jié)果を保存します。 2。ボトムアップ(表):基本的な狀況からソリューションを繰り返し構(gòu)築します。フィボナッチシーケンス、バックパッキングの問題など、最大/最小値、最適なソリューション、または重複するサブ問題が必要なシナリオに適しています。Pythonでは、デコレータまたはアレイを通じて実裝でき、再帰的な関係を特定し、ベンチマークの狀況を定義し、空間の複雑さを最適化することに注意する必要があります。

ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? Jun 20, 2025 am 12:56 AM

Pythonのソケットモジュールは、クライアントおよびサーバーアプリケーションの構(gòu)築に適した低レベルのネットワーク通信機(jī)能を提供するネットワークプログラミングの基礎(chǔ)です?;镜膜蔜CPサーバーを設(shè)定するには、Socket.Socket()を使用してオブジェクトを作成し、アドレスとポートをバインドし、.listen()を呼び出して接続をリッスンし、.accept()を介してクライアント接続を受け入れる必要があります。 TCPクライアントを構(gòu)築するには、ソケットオブジェクトを作成し、.connect()を呼び出してサーバーに接続する必要があります。次に、.sendall()を使用してデータと.recv()を送信して応答を受信します。複數(shù)のクライアントを処理するには、1つを使用できます。スレッド:接続するたびに新しいスレッドを起動します。 2。非同期I/O:たとえば、Asyncioライブラリは非ブロッキング通信を?qū)g現(xiàn)できます。注意すべきこと

Pythonでリストをスライスするにはどうすればよいですか? Pythonでリストをスライスするにはどうすればよいですか? Jun 20, 2025 am 12:51 AM

Pythonリストスライスに対するコアの答えは、[start:end:step]構(gòu)文をマスターし、その動作を理解することです。 1.リストスライスの基本形式はリスト[start:end:step]です。ここで、開始は開始インデックス(含まれています)、endはend index(含まれていません)、ステップはステップサイズです。 2。デフォルトで開始を省略して、0から開始を開始し、デフォルトで終了して終了し、デフォルトでステップを1に省略します。 3。my_list[:n]を使用して最初のnアイテムを取得し、my_list [-n:]を使用して最後のnアイテムを取得します。 4.ステップを使用して、my_list [:: 2]などの要素をスキップして、均一な數(shù)字と負(fù)のステップ値を取得できます。 5.一般的な誤解には、終了インデックスが含まれません

Pythonで日付と時間を操作するためにDateTimeモジュールを使用するにはどうすればよいですか? Pythonで日付と時間を操作するためにDateTimeモジュールを使用するにはどうすればよいですか? Jun 20, 2025 am 12:58 AM

PythonのDateTimeモジュールは、基本的な日付と時刻の処理要件を満たすことができます。 1. DateTime.now()を通じて現(xiàn)在の日付と時刻を取得するか、それぞれ.date()と.time()を抽出できます。 2。DateTimeなどの特定の日付と時刻のオブジェクトを手動で作成できます(年= 2025、月= 12、日= 25、時間= 18、分= 30)。 3. .strftime()を使用して、形式で文字列を出力します。一般的なコードには、%y、%m、%d、%h、%m、および%sが含まれます。 Strptime()を使用して、文字列をDateTimeオブジェクトに解析します。 4.日付の出荷にTimedeltaを使用します

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

単純な「こんにちは、世界!」を書くにはどうすればよいですかPythonのプログラム? 単純な「こんにちは、世界!」を書くにはどうすればよいですかPythonのプログラム? Jun 24, 2025 am 12:45 AM

「こんにちは、世界!」プログラムは、Pythonで書かれた最も基本的な例です。これは、基本的な構(gòu)文を?qū)g証し、開発環(huán)境が正しく構(gòu)成されていることを確認(rèn)するために使用されます。 1.コードプリント( "Hello、World!")の行を介して実裝され、実行後、指定されたテキストがコンソールに出力されます。 2。実行中の手順には、Pythonのインストール、テキストエディターを使用したコードの書き込み、.pyファイルとしての保存、端末のファイルの実行が含まれます。 3.一般的なエラーには、欠落しているブラケットまたは引用符、資本印刷の誤用、.py形式として保存されていない、環(huán)境エラーの実行が含まれます。 4.オプションのツールには、ローカルテキストエディターターミナル、オンラインエディター(Replit.comなど)が含まれます

Pythonのタプルは何ですか?また、リストとどのように違いますか? Pythonのタプルは何ですか?また、リストとどのように違いますか? Jun 20, 2025 am 01:00 AM

tuplesinpythonareimMtabledatabledAstructureSusedToreCollectionSofitems、wheneaslistaremutable.tuallesReadedefizedwitheShessandCommas、supportindexing、andcannotbemodifiedaftercreation、making themfasterandMoremory-efficientthanlists.usepleratain

Pythonでランダムな文字列を生成するにはどうすればよいですか? Pythonでランダムな文字列を生成するにはどうすればよいですか? Jun 21, 2025 am 01:02 AM

ランダムな文字列を生成するには、Pythonのランダムモジュールの組み合わせを使用できます。特定の手順は次のとおりです。1。ランダムモジュールと文字列モジュールをインポートします。 2。string.ascii_lettersやstring.digitsなどの文字プールを定義します。 3.必要な長さを設(shè)定します。 4。Random.Choices()を呼び出して、文字列を生成します。たとえば、コードには、インポランドームとインポートストリング、設(shè)定長= 10、文字= string.ascii_letters string.digits and execute '' .jein(random.c)が含まれます。

See all articles