Algorithme SIFT (Scale Invariant Features)
Jan 22, 2024 pm 05:09 PML'algorithme SIFT (Scale Invariant Feature Transform) est un algorithme d'extraction de caractéristiques utilisé dans les domaines du traitement d'images et de la vision par ordinateur. Cet algorithme a été proposé en 1999 pour améliorer les performances de reconnaissance et de correspondance d'objets dans les systèmes de vision par ordinateur. L'algorithme SIFT est robuste et précis et est largement utilisé dans la reconnaissance d'images, la reconstruction tridimensionnelle, la détection de cibles, le suivi vidéo et d'autres domaines. Il obtient l'invariance d'échelle en détectant les points clés dans plusieurs espaces d'échelle et en extrayant des descripteurs de caractéristiques locales autour des points clés. Les principales étapes de l'algorithme SIFT comprennent la construction d'un espace d'échelle, la détection des points clés, le positionnement des points clés, l'attribution de directions et la génération de descripteurs de caractéristiques. Grace à ces étapes, l’algorithme SIFT peut extraire des fonctionnalités robustes et uniques pour obtenir une reconnaissance et une correspondance efficaces des images.
L'algorithme SIFT a la principale caractéristique d'être invariant aux changements d'échelle, de rotation et de luminosité de l'image, et peut extraire des points caractéristiques uniques et stables pour obtenir une correspondance et une reconnaissance efficaces. Ses principales étapes comprennent la détection des valeurs extrêmes de l'espace d'échelle, le positionnement des points clés, l'attribution de direction, la description et la correspondance des points clés, etc. Grace à la détection des valeurs extrêmes de l'espace d'échelle, l'algorithme SIFT peut détecter des points extrêmes dans des images à différentes échelles. Au cours de l'étape de positionnement des points clés, les points clés présentant une stabilité et un caractère unique sont déterminés grace à la détection des valeurs extrêmes locales et à l'élimination des réponses de bord. L'étape d'attribution de direction attribue la direction dominante à chaque point clé pour améliorer l'invariance de rotation de la description des caractéristiques. L'étape de description des points clés utilise les informations de dégradé d'image autour des points clés pour générer des caractéristiques
1. Détection des valeurs extrêmes de l'espace d'échelle
Effectuez un traitement spatial d'échelle sur l'image d'origine via la fonction de différence gaussienne afin de détecter les valeurs extrêmes valeurs avec différentes échelles point. Ensuite, l'opérateur DoG est utilisé pour détecter ces points extrêmes, c'est-à-dire que la différence entre deux couches adjacentes d'images gaussiennes dans des pyramides gaussiennes d'échelles et de positions spatiales différentes est comparée pour obtenir des points clés invariants d'échelle.
2. Positionnement des points clés
Ensuite, l'algorithme SIFT attribue des directions à chaque point clé pour assurer l'invariance à la transformation de rotation. L'allocation de direction utilise la méthode statistique de l'histogramme de gradient pour calculer la valeur du gradient et la direction des pixels autour de chaque point clé, puis distribuer ces valeurs à l'histogramme de gradient, et enfin sélectionner le plus grand pic de l'histogramme comme point principal de la direction du point clé.
3. Allocation de direction
Après le positionnement des points clés et l'attribution de la direction, l'algorithme SIFT utilise le descripteur de caractéristiques du bloc d'image local pour décrire les caractéristiques régionales de chaque point clé. Le descripteur est construit sur la base de pixels autour de points clés pour garantir l'invariance aux changements de rotation, d'échelle et de luminosité. Plus précisément, l'algorithme SIFT divise les blocs d'image autour du point clé en plusieurs sous-régions, puis calcule l'ampleur et la direction du gradient des pixels dans chaque sous-région et construit un vecteur de caractéristiques à 128 dimensions pour décrire les caractéristiques locales de l'image. point clé. .
4. Description et correspondance des points clés
Enfin, l'algorithme SIFT effectue une correspondance d'image en comparant les vecteurs de caractéristiques des points clés dans les deux images. Plus précisément, l'algorithme évalue la similarité entre deux vecteurs de caractéristiques en calculant leur distance euclidienne ou leur similarité cosinuso?dale, obtenant ainsi une correspondance de caractéristiques et une reconnaissance de cible.
Comment l'algorithme de transformation de caractéristiques invariant à l'échelle détecte-t-il les points clés dans les images??
L'algorithme SIFT effectue un traitement spatial d'échelle sur l'image originale via la fonction de différence gaussienne pour détecter les points extrêmes avec différentes échelles. Plus précisément, l'algorithme SIFT réalise la transformation d'échelle de l'image en construisant une pyramide gaussienne, c'est-à-dire en convoluant et en sous-échantillonnant continuellement l'image originale pour obtenir une série d'images gaussiennes à différentes échelles. Ensuite, des points clés invariants d'échelle sont obtenus en effectuant une opération de différence, à savoir l'opérateur DoG, sur deux couches adjacentes d'images gaussiennes.
Avant d'effectuer l'opération d'opérateur DoG, il est nécessaire de déterminer le nombre de couches de la pyramide gaussienne et l'échelle de chaque couche de l'image. L'algorithme SIFT divise généralement la pyramide gaussienne en plusieurs couches, et la taille de l'image de chaque couche est la moitié de celle de la couche précédente. Cela garantit que le changement d'échelle de l'image n'affectera pas la détection des points clés. Pour chaque couche d'image, l'algorithme SIFT sélectionne également plusieurs échelles afin de détecter les points clés à différentes échelles.
Après avoir déterminé le nombre de couches de la pyramide de Gauss et l'échelle de chaque couche de l'image, l'algorithme SIFT recherchera les points extrêmes sur chaque couche d'image, c'est-à-dire les 26 pixels autour de chaque pixel de la pyramide de Gauss. dans cette couche Parmi les points, recherchez la valeur maximale ou minimale et comparez-la avec les points de pixels correspondants dans les deux niveaux adjacents de la pyramide gaussienne pour déterminer si le point est un point extrême dans l'espace d'échelle. Cela permet la détection de points clés avec stabilité et unicité dans des images de différentes échelles. Il convient de noter que l'algorithme SIFT effectuera également un certain filtrage des points extrêmes détectés, comme l'exclusion des points de faible contraste et des bords.
Après avoir déterminé l'emplacement des points clés, l'algorithme SIFT effectuera également le positionnement des points clés et l'attribution de direction pour garantir l'invariance à la transformation de rotation. Plus précisément, l'algorithme SIFT calcule la valeur du gradient et la direction des pixels autour de chaque point clé et attribue ces valeurs à l'histogramme du gradient. Ensuite, l'algorithme SIFT sélectionnera le plus grand pic de l'histogramme comme direction principale du point clé et l'utilisera comme direction du point. Cela garantit que les points clés sont invariants en termes de rotation et fournit des informations de direction pour la description ultérieure des fonctionnalités.
Il est à noter que la détection et le positionnement des points clés dans l'algorithme SIFT sont basés sur la pyramide gaussienne et l'opérateur DoG, l'algorithme a donc une bonne robustesse aux changements d'échelle de l'image. Cependant, l'algorithme SIFT présente une complexité de calcul élevée et nécessite un grand nombre d'opérations de convolution et de différence d'image. Par conséquent, certaines optimisations et accélérations sont nécessaires dans des applications pratiques, telles que l'utilisation de technologies d'image intégrale et de filtrage rapide.
En général, l'algorithme SIFT, en tant qu'algorithme d'extraction de caractéristiques efficace, présente une robustesse et une précision élevées et peut gérer efficacement les transformations telles que l'échelle, la rotation et la luminosité de l'image, permettant ainsi une extraction et une identification efficaces. . Cet algorithme a été largement utilisé dans les domaines de la vision par ordinateur et du traitement d’images, apportant d’importantes contributions au développement des systèmes de vision par ordinateur.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La détection d'objets est une tache importante dans le domaine de la vision par ordinateur, utilisée pour identifier des objets dans des images ou des vidéos et localiser leur emplacement. Cette tache est généralement divisée en deux catégories d'algorithmes, à une étape et à deux étapes, qui diffèrent en termes de précision et de robustesse. Algorithme de détection de cible en une seule étape L'algorithme de détection de cible en une seule étape convertit la détection de cible en un problème de classification. Son avantage est qu'il est rapide et peut terminer la détection en une seule étape. Cependant, en raison d'une simplification excessive, la précision n'est généralement pas aussi bonne que celle de l'algorithme de détection d'objets en deux étapes. Les algorithmes courants de détection d'objets en une seule étape incluent YOLO, SSD et FasterR-CNN. Ces algorithmes prennent généralement l’image entière en entrée et exécutent un classificateur pour identifier l’objet cible. Contrairement aux algorithmes traditionnels de détection de cibles en deux étapes, ils n'ont pas besoin de définir des zones à l'avance, mais de prédire directement

La distance de Wasserstein, également connue sous le nom de distance de EarthMover (EMD), est une mesure utilisée pour mesurer la différence entre deux distributions de probabilité. Par rapport à la divergence KL ou à la divergence JS traditionnelle, la distance de Wasserstein prend en compte les informations structurelles entre les distributions et présente donc de meilleures performances dans de nombreuses taches de traitement d'image. En calculant le co?t minimum de transport entre deux distributions, la distance de Wasserstein permet de mesurer la quantité minimale de travail nécessaire pour transformer une distribution en une autre. Cette métrique est capable de capturer les différences géométriques entre les distributions, jouant ainsi un r?le important dans des taches telles que la génération d'images et le transfert de style. Par conséquent, la distance de Wasserstein devient le concept

L'algorithme Wu-Manber est un algorithme de correspondance de cha?nes utilisé pour rechercher efficacement des cha?nes. Il s'agit d'un algorithme hybride qui combine les avantages des algorithmes de Boyer-Moore et de Knuth-Morris-Pratt pour fournir une correspondance de modèles rapide et précise. étape 1 de l'algorithme Wu-Manber. Créez une table de hachage qui mappe chaque sous-cha?ne possible du modèle à la position du modèle où cette sous-cha?ne appara?t. 2. Cette table de hachage est utilisée pour identifier rapidement les emplacements de départ potentiels des modèles dans le texte. 3. Parcourez le texte et comparez chaque caractère au caractère correspondant dans le modèle. 4. Si les caractères correspondent, vous pouvez passer au caractère suivant et poursuivre la comparaison. 5. Si les caractères ne correspondent pas, vous pouvez utiliser une table de hachage pour déterminer le prochain caractère potentiel du modèle.

L'algorithme ID3 est l'un des algorithmes de base de l'apprentissage des arbres de décision. Il sélectionne le meilleur point de partage en calculant le gain d'informations de chaque fonctionnalité pour générer un arbre de décision. Le gain d'informations est un concept important dans l'algorithme ID3, utilisé pour mesurer la contribution des caractéristiques à la tache de classification. Cet article présentera en détail le concept, la méthode de calcul et l'application du gain d'information dans l'algorithme ID3. 1. Le concept d'entropie de l'information L'entropie de l'information est un concept de la théorie de l'information qui mesure l'incertitude des variables aléatoires. Pour un nombre de variable aléatoire discrète, et p(x_i) représente la probabilité que la variable aléatoire X prenne la valeur x_i. lettre

La restauration de photos anciennes est une méthode d'utilisation de la technologie de l'intelligence artificielle pour réparer, améliorer et améliorer de vieilles photos. Grace à des algorithmes de vision par ordinateur et d’apprentissage automatique, la technologie peut identifier et réparer automatiquement les dommages et les imperfections des anciennes photos, les rendant ainsi plus claires, plus naturelles et plus réalistes. Les principes techniques de la restauration de photos anciennes incluent principalement les aspects suivants : 1. Débruitage et amélioration de l'image Lors de la restauration de photos anciennes, elles doivent d'abord être débruitées et améliorées. Des algorithmes et des filtres de traitement d'image, tels que le filtrage moyen, le filtrage gaussien, le filtrage bilatéral, etc., peuvent être utilisés pour résoudre les problèmes de bruit et de taches de couleur, améliorant ainsi la qualité des photos. 2. Restauration et réparation d'images Les anciennes photos peuvent présenter certains défauts et dommages, tels que des rayures, des fissures, une décoloration, etc. Ces problèmes peuvent être résolus par des algorithmes de restauration et de réparation d’images

Introduction à la conférence Avec le développement rapide de la science et de la technologie, l'intelligence artificielle est devenue une force importante dans la promotion du progrès social. à notre époque, nous avons la chance d’être témoins et de participer à l’innovation et à l’application de l’intelligence artificielle distribuée (DAI). L’intelligence artificielle distribuée est une branche importante du domaine de l’intelligence artificielle, qui a attiré de plus en plus d’attention ces dernières années. Les agents basés sur de grands modèles de langage (LLM) ont soudainement émergé. En combinant les puissantes capacités de compréhension du langage et de génération des grands modèles, ils ont montré un grand potentiel en matière d'interaction en langage naturel, de raisonnement par connaissances, de planification de taches, etc. AIAgent reprend le grand modèle de langage et est devenu un sujet br?lant dans le cercle actuel de l'IA. Au

Les réseaux de neurones convolutifs fonctionnent bien dans les taches de débruitage d'images. Il utilise les filtres appris pour filtrer le bruit et restaurer ainsi l'image originale. Cet article présente en détail la méthode de débruitage d'image basée sur un réseau neuronal convolutif. 1. Présentation du réseau neuronal convolutif Le réseau neuronal convolutif est un algorithme d'apprentissage en profondeur qui utilise une combinaison de plusieurs couches convolutives, des couches de regroupement et des couches entièrement connectées pour apprendre et classer les caractéristiques de l'image. Dans la couche convolutive, les caractéristiques locales de l'image sont extraites via des opérations de convolution, capturant ainsi la corrélation spatiale dans l'image. La couche de pooling réduit la quantité de calcul en réduisant la dimension des fonctionnalités et conserve les principales fonctionnalités. La couche entièrement connectée est responsable du mappage des fonctionnalités et des étiquettes apprises pour mettre en ?uvre la classification des images ou d'autres taches. La conception de cette structure de réseau rend les réseaux de neurones convolutifs utiles dans le traitement et la reconnaissance d'images.

Le suivi d'objets est une tache importante en vision par ordinateur et est largement utilisé dans la surveillance du trafic, la robotique, l'imagerie médicale, le suivi automatique des véhicules et d'autres domaines. Il utilise des méthodes d'apprentissage profond pour prédire ou estimer la position de l'objet cible dans chaque image consécutive de la vidéo après avoir déterminé la position initiale de l'objet cible. Le suivi d'objets a un large éventail d'applications dans la vie réelle et revêt une grande importance dans le domaine de la vision par ordinateur. Le suivi d'objets implique généralement le processus de détection d'objets. Voici un bref aper?u des étapes de suivi des objets : 1. Détection d'objets, où l'algorithme classe et détecte les objets en créant des cadres de délimitation autour d'eux. 2. Attribuez une identification (ID) unique à chaque objet. 3. Suivez le mouvement des objets détectés dans des images tout en stockant les informations pertinentes. Types de cibles de suivi de cible
