国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Maison Périphériques technologiques IA Finetuning qwen2 7b vlm en utilisant un peu pour la radiologie VQA

Finetuning qwen2 7b vlm en utilisant un peu pour la radiologie VQA

Mar 09, 2025 am 09:35 AM

Modèles de vision en langue (VLMS): réglage fin QWEN2 pour l'analyse d'image des soins de santé

Modèles de vision en langue (VLM), un sous-ensemble d'IA multimodal, excellent dans le traitement des données visuelles et textuelles pour générer des sorties textuelles. Contrairement aux grands modèles de langue (LLMS), les VLMs exploitent l'apprentissage zéro et les capacités de généralisation solides, gérer les taches sans formation spécifique préalable. Les applications vont de l'identification des objets dans les images à la compréhension des documents complexes. Cet article détaille le réglage du VLM QWEN2 7B d'Alibaba sur un ensemble de données de radiologie de santé personnalisés.

Ce blog démontre du réglage fin du modèle de langage visuel QWEN2 7B d'Alibaba à l'aide d'un ensemble de données de soins de santé personnalisés d'images radiologiques et de paires de réponses à des questions.

Objectifs d'apprentissage:

  • Saisissez les capacités des VLM dans la gestion des données visuelles et textuelles.
  • Comprendre la réponse aux questions visuelles (VQA) et sa combinaison de reconnaissance d'image et de traitement du langage naturel.
  • Reconnaissez l'importance des VLM de réglage fin pour les applications spécifiques au domaine.
  • Apprenez à utiliser un VLM QWEN2 7B à réglage fin pour les taches précises sur les ensembles de données multimodaux.
  • Comprendre les avantages et la mise en ?uvre du réglage fin VLM pour améliorer les performances.

Cet article fait partie du blogathon de la science des données.

Table des matières:

  • Introduction aux modèles de langage de vision
  • Question visuelle Réponse expliquée
  • VLMS affinés pour les applications spécialisées
  • introduisant un peu unis
  • Implémentation de code avec le 4 bits Quantisé QWEN2 7B VLM
  • Conclusion
  • Les questions fréquemment posées

Introduction aux modèles de langage de vision:

Les VLM sont des modèles multimodaux qui traitent à la fois des images et du texte. Ces modèles génératifs prennent l'image et le texte en entrée, produisant des sorties de texte. Les grands VLM démontrent de fortes capacités de tirs zéro, une généralisation efficace et une compatibilité avec divers types d'images. Les applications incluent le chat basé sur l'image, la reconnaissance d'image axée sur l'instruction, le VQA, la compréhension des documents et le sous-titrage de l'image.

Finetuning Qwen2 7B VLM Using Unsloth for Radiology VQA

De nombreux VLMS capturent les propriétés d'image spatiale, générant des bo?tes de délimitation ou des masques de segmentation pour la détection et la localisation des objets. Les grands VLM existants varient dans les données de formation, les méthodes d'encodage d'images et les capacités globales.

Réponse de question visuelle (VQA):

VQA est une tache d'IA axée sur la génération de réponses précises aux questions sur les images. Un modèle VQA doit comprendre à la fois le contenu de l'image et la sémantique de la question, combinant la reconnaissance d'image et le traitement du langage naturel. Par exemple, étant donné une image d'un chien sur un canapé et la question "Où est le chien?", Le modèle identifie le chien et le canapé, puis répond "sur un canapé."

VLMS à réglage fin pour les applications spécifiques au domaine:

Bien que les LLM sont formées sur de vastes données textuelles, ce qui les rend adaptées à de nombreuses taches sans réglage fin, les images Internet n'ont pas la spécificité du domaine souvent nécessaire pour les applications dans les soins de santé, les finances ou la fabrication. Les VLM de réglage fin sur les ensembles de données personnalisés sont cruciaux pour des performances optimales dans ces domaines spécialisés.

Scénarios clés pour le réglage fin:

  • Adaptation du domaine: Adapter des modèles à des domaines spécifiques avec des caractéristiques de langage ou de données uniques.
  • Personnalisation spécifique à la tache: Optimisation de modèles pour des taches particulières, répondant à leurs exigences uniques.
  • Efficacité des ressources: Améliorer les performances du modèle tout en minimisant l'utilisation des ressources informatiques.

UNSLUCH: Un cadre de réglage fin:

Unnuloth est un cadre pour le réglage efficace de la langue et du langage de vision. Les caractéristiques clés incluent:

  • Affinement fin plus rapide: a considérablement réduit les temps de formation et la consommation de mémoire.
  • Compatibilité entre les véhicules croisés: Prise en charge de diverses architectures GPU.
  • Inférence plus rapide: Amélioration de la vitesse d'inférence pour les modèles affinés.

Implémentation du code (4 bits Quantisé QWEN2 7B VLM):

Les sections suivantes détaillent l'implémentation du code, y compris les importations de dépendances, le chargement de l'ensemble de données, la configuration du modèle et la formation et l'évaluation à l'aide de Bertscore. Le code complet est disponible sur [GitHub Repo] (insérer le lien github ici).

(Les extraits de code et les explications des étapes 1 à 10 seraient inclus ici, reflétant la structure et le contenu de l'entrée d'origine, mais avec un léger reformatique et des explications potentiellement plus concises si possible.

Conclusion:

Les VLM de réglage fin comme QWEN2 améliorent considérablement les performances des taches spécifiques au domaine. Les métriques élevées de Bertscore démontrent la capacité du modèle à générer des réponses précises et contextuellement pertinentes. Cette adaptabilité est cruciale pour diverses industries qui doivent analyser les données multimodales.

Prise des clés:

  • VLM QWEN2 à réglage fin montre une forte compréhension sémantique.
  • Adapt les adaptations fins VLMS aux ensembles de données spécifiques au domaine.
  • Le réglage fin augmente la précision au-delà des performances zéro-shot.
  • Le réglage fin améliore l'efficacité dans la création de modèles personnalisés.
  • L'approche est évolutive et applicable dans toutes les industries.
  • VLMS affinés excellent dans l'analyse des ensembles de données multimodaux.

Questions fréquemment posées:

(La section FAQS serait incluse ici, reflétant l'entrée d'origine.)

(La phrase finale sur l'analyse vidhya serait également incluse.)

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefa?on, veuillez contacter admin@php.cn

Outils d'IA chauds

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Top 7 Alternatives Notebooklm Top 7 Alternatives Notebooklm Jun 17, 2025 pm 04:32 PM

Notebooklm de Google est un outil de prise de notes SMART IA propulsé par Gemini 2.5, qui excelle à résumer les documents. Cependant, il a toujours des limites dans l'utilisation des outils, comme les bouchons de source, la dépendance au nuage et la fonction récentes ?Discover?

De l'adoption à l'avantage: 10 tendances fa?onnant les LLM de l'entreprise en 2025 De l'adoption à l'avantage: 10 tendances fa?onnant les LLM de l'entreprise en 2025 Jun 20, 2025 am 11:13 AM

Voici dix tendances convaincantes qui remodèlent le paysage de l'IA de l'entreprise. L'engagement financier de la lancement envers les organisations LLMS augmente considérablement leurs investissements dans les LLM, 72% s'attendant à ce que leurs dépenses augmentent cette année. Actuellement, près de 40% A

L'investisseur de l'IA est resté à l'arrêt? 3 chemins stratégiques pour acheter, construire ou s'associer avec les fournisseurs d'IA L'investisseur de l'IA est resté à l'arrêt? 3 chemins stratégiques pour acheter, construire ou s'associer avec les fournisseurs d'IA Jul 02, 2025 am 11:13 AM

L'investissement est en plein essor, mais le capital seul ne suffit pas. Avec la montée et la décoloration des évaluations, les investisseurs dans les fonds de capital-risque axés sur l'IA doivent prendre une décision clé: acheter, construire ou partenaire pour gagner un avantage? Voici comment évaluer chaque option et PR

La croissance imparable de l'IA générative (Perspectives de l'IA partie 1) La croissance imparable de l'IA générative (Perspectives de l'IA partie 1) Jun 21, 2025 am 11:11 AM

Divulgation: mon entreprise, Tirias Research, a consulté IBM, NVIDIA et d'autres sociétés mentionnées dans cet article.Les moteurs de croissance La poussée de l'adoption générative de l'IA était plus dramatique que même les projections les plus optimistes ne pourraient prévoir. Ensuite, un

Nouveau rapport Gallup: la préparation à la culture de l'IA exige de nouveaux mentalités Nouveau rapport Gallup: la préparation à la culture de l'IA exige de nouveaux mentalités Jun 19, 2025 am 11:16 AM

L'écart entre l'adoption généralisée et la préparation émotionnelle révèle quelque chose d'essentiel sur la fa?on dont les humains s'engagent avec leur gamme croissante de compagnons numériques. Nous entrons dans une phase de coexistence où les algorithmes se tissent dans notre quotidien en direct

Ces startups aident les entreprises à se présenter dans des résumés de recherche d'IA Ces startups aident les entreprises à se présenter dans des résumés de recherche d'IA Jun 20, 2025 am 11:16 AM

Ces jours sont comptés, grace à l'IA. Le trafic de recherche pour des entreprises comme le site de voyage Kayak et Edtech Company Chegg en baisse, en partie parce que 60% des recherches sur des sites comme Google ne font pas que les utilisateurs cliquent sur des liens, selon un étalon

AGI et AI Superintelligence vont fortement frapper la barrière d'hypothèse du plafond humain AGI et AI Superintelligence vont fortement frapper la barrière d'hypothèse du plafond humain Jul 04, 2025 am 11:10 AM

Parlons-en. Cette analyse d'une percée innovante de l'IA fait partie de ma couverture de colonne Forbes en cours sur les dernières personnes en IA, notamment en identifiant et en expliquant diverses complexités d'IA percutantes (voir le lien ici). Se dirigeant vers Agi et

Cisco traque son voyage d'origine AI chez Cisco Live U.S.2025 Cisco traque son voyage d'origine AI chez Cisco Live U.S.2025 Jun 19, 2025 am 11:10 AM

Examinons de plus près ce que j'ai trouvé le plus important - et comment Cisco pourrait s'appuyer sur ses efforts actuels pour réaliser davantage ses ambitions. (Remarque: Cisco est un client consultatif de mon entreprise, Moor Insights & Strategy.)

See all articles