


De puissantes bibliothèques Python pour la visualisation avancée des données?: un guide du développeur
Jan 11, 2025 am 11:40 AMEn tant qu'auteur prolifique, je vous encourage à explorer mes livres sur Amazon. N'oubliez pas de me suivre sur Medium pour une assistance et des mises à jour continues. Merci pour votre précieux soutien !
Une visualisation efficace des données est cruciale à la fois pour l'analyse des données et pour une communication claire. En tant que programmeur Python, j'ai découvert qu'un solide arsenal d'outils de visualisation est indispensable. Cet article met en évidence sept bibliothèques Python puissantes qui ont considérablement amélioré mes capacités de présentation de données.
Matplotlib, une bibliothèque fondamentale, offre une flexibilité inégalée pour créer des tracés statiques personnalisés. Son contr?le granulaire est inestimable pour des visualisations précises. Un exemple de tracé linéaire simple?:
<code>import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) plt.plot(x, y) plt.title('Sine Wave') plt.xlabel('x') plt.ylabel('sin(x)') plt.show()</code>
Seaborn, basé sur Matplotlib, excelle dans la visualisation statistique, fournissant une interface conviviale pour créer des graphiques statistiques visuellement attrayants. C'est particulièrement utile lorsqu'il s'agit d'ensembles de données contenant plusieurs variables. Un nuage de points avec exemple de droite de régression?:
<code>import seaborn as sns import matplotlib.pyplot as plt tips = sns.load_dataset("tips") sns.regplot(x="total_bill", y="tip", data=tips) plt.title('Tip vs Total Bill') plt.show()</code>
Pour les visualisations interactives et déployables sur le Web, Plotly est mon choix préféré. Sa force réside dans la création de tableaux de bord et dans la possibilité d'explorer les données des utilisateurs. Un exemple de tracé linéaire interactif?:
<code>import plotly.graph_objects as go import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) fig = go.Figure(data=go.Scatter(x=x, y=y, mode='lines')) fig.update_layout(title='Interactive Sine Wave', xaxis_title='x', yaxis_title='sin(x)') fig.show()</code>
Altair, une bibliothèque déclarative basée sur Vega et Vega-Lite, propose une approche intuitive pour créer des visualisations puissantes, en particulier des tracés multi-vues complexes. Un exemple de nuage de points?:
<code>import altair as alt from vega_datasets import data source = data.cars() chart = alt.Chart(source).mark_circle().encode( x='Horsepower', y='Miles_per_Gallon', color='Origin', tooltip=['Name', 'Origin', 'Horsepower', 'Miles_per_Gallon'] ).interactive() chart.save('interactive_scatter_plot.html')</code>
Vispy fournit des visualisations 2D et 3D hautes performances accélérées par GPU, idéales pour les grands ensembles de données ou les applications en temps réel. Un exemple simple de nuage de points 3D?:
<code>import numpy as np from vispy import app, scene canvas = scene.SceneCanvas(keys='interactive', size=(800, 600), show=True) view = canvas.central_widget.add_view() # generate data pos = np.random.normal(size=(1000, 3), scale=0.2) colors = np.random.uniform(low=0.5, high=1, size=(1000, 3)) # create scatter visual scatter = scene.visuals.Markers() scatter.set_data(pos, edge_color=None, face_color=colors, size=5) view.add(scatter) view.camera = 'turntable' app.run()</code>
Pygal crée de superbes graphiques SVG évolutifs facilement intégrés dans les applications Web. Un exemple de graphique à barres?:
<code>import pygal bar_chart = pygal.Bar() bar_chart.title = 'Browser usage evolution (in %)' bar_chart.x_labels = map(str, range(2002, 2013)) bar_chart.add('Firefox', [None, None, 0, 16.6, 25, 31, 36.4, 45.5, 46.3, 42.8, 37.1]) bar_chart.add('Chrome', [None, None, None, None, None, None, 0, 3.9, 10.8, 23.8, 35.3]) bar_chart.add('IE', [85.8, 84.6, 84.7, 74.5, 66, 58.6, 54.7, 44.8, 36.2, 26.6, 20.1]) bar_chart.add('Others', [14.2, 15.4, 15.3, 8.9, 9, 10.4, 8.9, 5.8, 6.7, 6.8, 7.5]) bar_chart.render_to_file('bar_chart.svg')</code>
Yellowbrick est ma référence pour les projets d'apprentissage automatique, étendant Scikit-learn pour la visualisation de la sélection de modèles. Un exemple de matrice de confusion?:
<code>from sklearn.model_selection import train_test_split from sklearn.svm import LinearSVC from yellowbrick.classifier import ConfusionMatrix from sklearn.datasets import load_iris iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) model = LinearSVC() cm = ConfusionMatrix(model, classes=iris.target_names) cm.fit(X_train, y_train) cm.score(X_test, y_test) cm.show()</code>
La sélection de la bibliothèque dépend des besoins du projet. Matplotlib fournit une personnalisation détaillée, Seaborn propose des valeurs par défaut esthétiques, Plotly gère les visualisations Web interactives, Altair utilise une approche déclarative de grammaire graphique, Vispy excelle avec les grands ensembles de données et la 3D, Pygal produit des SVG évolutifs et Yellowbrick aide à l'évaluation des modèles d'apprentissage automatique. La combinaison de ces bibliothèques, notamment au sein des notebooks Jupyter, améliore l'analyse interactive des données et le partage collaboratif. L'audience et le type de données influencent également la sélection de la bibliothèque.
La ma?trise de ces bibliothèques améliore considérablement la communication des données. Le domaine de la visualisation de données est en constante évolution, il est donc essentiel de rester à jour. L'expérimentation est encouragée?: le but ultime est une communication claire et efficace des informations sur les données.
En bref, Matplotlib, Seaborn, Plotly, Altair, Vispy, Pygal et Yellowbrick offrent une bo?te à outils robuste pour la visualisation avancée des données, répondant à divers besoins et types de projets. Bonne visualisation?!
101 livres
101 Books est une maison d'édition basée sur l'IA cofondée par l'auteur Aarav Joshi. Notre technologie d'IA maintient les co?ts à un niveau bas (certains livres co?tent seulement 4?$), ce qui rend les connaissances de qualité accessibles.
Retrouvez notre livre Golang Clean Code sur Amazon.
Restez informé des mises à jour et des nouvelles versions. Recherchez Aarav Joshi sur Amazon pour plus de titres et d'offres spéciales?!
Nos Créations
Découvrez nos autres projets?:
Centre des investisseurs | Centre des investisseurs (espagnol) | Investor Central (allemand) | Vie intelligente | époques & échos | Mystères déroutants | Hindutva | Développeur élite | écoles JS
Nous sommes sur Medium
Tech Koala Insights | Epoques & Echos Monde | Support Central des Investisseurs | Mystères déroutants Medium | Sciences & Epoques Medium | Hindutva moderne
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La clé pour gérer l'authentification de l'API est de comprendre et d'utiliser correctement la méthode d'authentification. 1. Apikey est la méthode d'authentification la plus simple, généralement placée dans l'en-tête de demande ou les paramètres d'URL; 2. BasicAuth utilise le nom d'utilisateur et le mot de passe pour la transmission de codage Base64, qui convient aux systèmes internes; 3. OAuth2 doit d'abord obtenir le jeton via client_id et client_secret, puis apporter le Bearertoken dans l'en-tête de demande; 4. Afin de gérer l'expiration des jetons, la classe de gestion des jetons peut être encapsulée et rafra?chie automatiquement le jeton; En bref, la sélection de la méthode appropriée en fonction du document et le stockage en toute sécurité des informations clés sont la clé.

Assert est un outil d'affirmation utilisé dans Python pour le débogage et lance une affirmation d'établissement lorsque la condition n'est pas remplie. Sa syntaxe est affirmer la condition plus les informations d'erreur facultatives, qui conviennent à la vérification de la logique interne telle que la vérification des paramètres, la confirmation d'état, etc., mais ne peuvent pas être utilisées pour la sécurité ou la vérification des entrées des utilisateurs, et doit être utilisée en conjonction avec des informations d'invite claires. Il n'est disponible que pour le débogage auxiliaire au stade de développement plut?t que pour remplacer la manipulation des exceptions.

TypeHintsInpythonsolvetheproblebandofambigu?té et opposant à un montant de type de type parallèlement au développement de l'aménagement en fonction des types de type.

Une méthode courante pour parcourir deux listes simultanément dans Python consiste à utiliser la fonction zip (), qui appariera plusieurs listes dans l'ordre et sera la plus courte; Si la longueur de liste est incohérente, vous pouvez utiliser itertools.zip_langest () pour être le plus long et remplir les valeurs manquantes; Combiné avec enumerate (), vous pouvez obtenir l'index en même temps. 1.zip () est concis et pratique, adapté à l'itération des données appariées; 2.zip_langest () peut remplir la valeur par défaut lorsqu'il s'agit de longueurs incohérentes; 3. L'énumération (zip ()) peut obtenir des indices pendant la traversée, en répondant aux besoins d'une variété de scénarios complexes.

Inpython, itérateurslawjectsThatallowloopingthroughCollectionsbyImpleting __iter __ () et__Next __ (). 1) iteratorsworkVeatheitorat

Pour créer des API modernes et efficaces à l'aide de Python, FastAPI est recommandé; Il est basé sur des invites de type Python standard et peut générer automatiquement des documents, avec d'excellentes performances. Après avoir installé FastAPI et ASGI Server Uvicorn, vous pouvez écrire du code d'interface. En définissant les itinéraires, en écrivant des fonctions de traitement et en renvoyant des données, les API peuvent être rapidement construites. Fastapi prend en charge une variété de méthodes HTTP et fournit des systèmes de documentation SwaggerUI et Redoc générés automatiquement. Les paramètres d'URL peuvent être capturés via la définition du chemin, tandis que les paramètres de requête peuvent être implémentés en définissant des valeurs par défaut pour les paramètres de fonction. L'utilisation rationnelle des modèles pydantiques peut aider à améliorer l'efficacité du développement et la précision.

Pour tester l'API, vous devez utiliser la bibliothèque des demandes de Python. Les étapes consistent à installer la bibliothèque, à envoyer des demandes, à vérifier les réponses, à définir des délais d'attente et à réessayer. Tout d'abord, installez la bibliothèque via PiPinstallRequests; Utilisez ensuite les demandes.get () ou les demandes.Post () et d'autres méthodes pour envoyer des demandes GET ou POST; Vérifiez ensuite la réponse.status_code et la réponse.json () pour vous assurer que le résultat de retour est en conformité avec les attentes; Enfin, ajoutez des paramètres de délai d'expiration pour définir l'heure du délai d'expiration et combinez la bibliothèque de réessayer pour obtenir une nouvelle tentative automatique pour améliorer la stabilité.

Dans Python, les variables définies à l'intérieur d'une fonction sont des variables locales et ne sont valides que dans la fonction; Les variables globales sont définies à l'extérieur qui peuvent être lues n'importe où. 1. Les variables locales sont détruites lors de l'exécution de la fonction; 2. La fonction peut accéder aux variables globales mais ne peut pas être modifiée directement, donc le mot-clé global est requis; 3. Si vous souhaitez modifier les variables de fonction externes dans les fonctions imbriquées, vous devez utiliser le mot-clé non local; 4. Les variables avec le même nom ne se affectent pas dans différentes lunettes; 5. Global doit être déclaré lors de la modification des variables globales, sinon une erreur non liée à la dorsale sera augmentée. Comprendre ces règles permet d'éviter les bogues et d'écrire des fonctions plus fiables.
