国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Golang Lock granularity optimization skills for golang function concurrent cache

Lock granularity optimization skills for golang function concurrent cache

May 05, 2024 am 08:45 AM
golang concurrent access concurrent cache Lock granularity

Lock granularity tips for optimizing Go concurrent cache performance: Global lock: Simple implementation, if the lock granularity is too large, unnecessary competition will occur. Key-level locking: The lock granularity is refined to each key, but it will introduce a large number of locks and increase overhead. Shard lock: Divide the cache into multiple shards, each shard has a separate lock, to achieve a balance between concurrency and lock contention.

Lock granularity optimization skills for golang function concurrent cache

Lock granularity optimization techniques for Go function concurrent cache

In Go concurrent programming, cache is usually used to improve application performance . However, if the lock granularity of the cache is too large, it may cause unnecessary contention and affect concurrency. This article will explore how to improve the performance of Go concurrent cache by optimizing lock granularity.

Lock granularity

Lock granularity refers to the data range protected by a lock. In caching scenarios, there is usually a global lock protecting the entire cache, or a separate lock for each key in the cache.

Global lock

Global lock provides a simple implementation, but the lock granularity is too large. When multiple coroutines access different keys at the same time, competition will also occur.

Key-level lock

Key-level lock reduces the lock granularity to each key, allowing multiple coroutines to access different keys concurrently. But this will introduce a lot of locks, increase memory overhead and contention.

Shard lock

Shard lock divides the cache into multiple shards, each shard has a separate lock. This provides a compromise between global and key-level locks, reducing lock contention while maintaining some concurrency.

Practical case

Consider the following simple cache implementation using global locks:

type Cache struct {
    m map[string]interface{}
    mu sync.Mutex
}

func (c *Cache) Get(key string) (interface{}, bool) {
    c.mu.Lock()
    defer c.mu.Unlock()
    return c.m[key], true
}

Using shard locks, we can optimize the lock granularity:

type Cache struct {
    shards []*sync.Mutex
    data   []map[string]interface{}
}

func NewCache(numShards int) *Cache {
    shards := make([]*sync.Mutex, numShards)
    data := make([]map[string]interface{}, numShards)
    for i := 0; i < numShards; i++ {
        shards[i] = &sync.Mutex{}
        data[i] = make(map[string]interface{})
    }
    return &Cache{
        shards: shards,
        data:   data,
    }
}

func (c *Cache) Get(key string) (interface{}, bool) {
    shardIndex := hash(key) % len(c.shards)
    c.shards[shardIndex].Lock()
    defer c.shards[shardIndex].Unlock()
    return c.data[shardIndex][key], true
}

By dividing the cache into multiple shards, we reduce contention for each lock, thereby improving concurrency.

Selecting the appropriate lock granularity based on the application's load patterns and access patterns is critical to optimizing Go concurrent cache.

The above is the detailed content of Lock granularity optimization skills for golang function concurrent cache. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Which libraries in Go are developed by large companies or provided by well-known open source projects? Which libraries in Go are developed by large companies or provided by well-known open source projects? Apr 02, 2025 pm 04:12 PM

Which libraries in Go are developed by large companies or well-known open source projects? When programming in Go, developers often encounter some common needs, ...

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang's Purpose: Building Efficient and Scalable Systems Golang's Purpose: Building Efficient and Scalable Systems Apr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Does mysql optimize lock tables Does mysql optimize lock tables Apr 08, 2025 pm 01:51 PM

MySQL uses shared locks and exclusive locks to manage concurrency, providing three lock types: table locks, row locks and page locks. Row locks can improve concurrency, and use the FOR UPDATE statement to add exclusive locks to rows. Pessimistic locks assume conflicts, and optimistic locks judge the data through the version number. Common lock table problems manifest as slow querying, use the SHOW PROCESSLIST command to view the queries held by the lock. Optimization measures include selecting appropriate indexes, reducing transaction scope, batch operations, and optimizing SQL statements.

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

See all articles