


Transparent! An in-depth analysis of the principles of major machine learning models!
Apr 12, 2024 pm 05:55 PMIn layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label.
There are many models in machine learning, such as logistic regression model, decision tree model, support vector machine model, etc. Each model has its application data types and question types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution.
Take the connectionist perceptron as an example. By increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. This process can intuitively demonstrate the intrinsic connections between different models, as well as the possible transformations between models. According to the similarities, I roughly (not rigorously) divided the models into the following 6 categories to facilitate the discovery of basic commonalities and analyze them in depth one by one!
1. Neural network (connectionist) models:
The connectionist model is a computing model that simulates the structure and function of the human brain neural network. . Its basic unit is a neuron. Each neuron receives input from other neurons and changes the influence of the input on the neuron by adjusting the weight. The neural network is a black box. Through the action of multiple nonlinear hidden layers, it can achieve close to the effect.
Representative models include DNN, SVM, Transformer, and LSTM. In some cases, the last layer of the deep neural network can be regarded as a logic Regression model used to classify input data. The support vector machine can also be regarded as a special type of neural network. There are only two layers in it: the input layer and the output layer. SVM additionally implements complex nonlinear transformation through kernel functions to achieve results similar to deep neural networks. Effect. The following is an analysis of the principle of the classic DNN model:
Deep neural network (DNN) is composed of multiple layers of neurons and passes the input data through the forward propagation process. To each layer of neurons, the output is obtained through layer-by-layer calculation. Each layer of neurons receives the output of the previous layer's neurons as input and outputs it to the next layer's neurons. The training process of DNN is implemented through the back propagation algorithm. During the training process, the error between the output layer and the real label is calculated, the error is back-propagated to each layer of neurons, and the weights and bias terms of the neurons are updated according to the gradient descent algorithm. By repeatedly iterating this process, the network parameters are continuously optimized, and the prediction error of the network is ultimately minimized.
The advantage of deep neural network (DNN) is its powerful feature learning ability. DNN can automatically learn the characteristics of data without manually designing features. Highly nonlinear and strong generalization ability. The disadvantage is that DNN requires a large number of parameters, which may lead to overfitting problems. At the same time, DNN requires a large amount of calculation and takes a long time to train. The following is a simple Python code example, using the Keras library to build a deep neural network model:
from keras.models import Sequentialfrom keras.layers import Densefrom keras.optimizers import Adamfrom keras.losses import BinaryCrossentropyimport numpy as np# 構(gòu)建模型model = Sequential()model.add(Dense(64, activatinotallow='relu', input_shape=(10,))) # 輸入層有10個特征model.add(Dense(64, activatinotallow='relu')) # 隱藏層有64個神經(jīng)元model.add(Dense(1, activatinotallow='sigmoid')) # 輸出層有1個神經(jīng)元,使用sigmoid激活函數(shù)進(jìn)行二分類任務(wù)# 編譯模型model.compile(optimizer=Adam(lr=0.001), loss=BinaryCrossentropy(), metrics=['accuracy'])# 生成模擬數(shù)據(jù)集x_train = np.random.rand(1000, 10) # 1000個樣本,每個樣本有10個特征y_train = np.random.randint(2, size=1000) # 1000個標(biāo)簽,二分類任務(wù)# 訓(xùn)練模型model.fit(x_train, y_train, epochs=10, batch_size=32) # 訓(xùn)練10個輪次,每次使用32個樣本進(jìn)行訓(xùn)練2. Symbolism model
Symbolism model is an intelligent simulation method based on logical reasoning. It believes that human beings are a physical symbol system and computers are also physical symbol systems. Therefore, the computer’s rule base and reasoning engine can be used to simulate human beings. Intelligent behavior is to use computer symbolic operations to simulate human cognitive processes (to put it bluntly, it is to store human logic into computers to achieve intelligent execution).
The representative models include expert systems, knowledge bases, and knowledge graphs. The principle is to encode information into a set of identifiable symbols, through explicit Rules for manipulating symbols to produce results. A simple example of an expert system is as follows:
# 定義規(guī)則庫rules = [{"name": "rule1", "condition": "sym1 == 'A' and sym2 == 'B'", "action": "result = 'C'"},{"name": "rule2", "condition": "sym1 == 'B' and sym2 == 'C'", "action": "result = 'D'"},{"name": "rule3", "condition": "sym1 == 'A' or sym2 == 'B'", "action": "result = 'E'"},]# 定義推理引擎def infer(rules, sym1, sym2):for rule in rules:if rule["condition"] == True:# 條件為真時執(zhí)行動作return rule["action"]return None# 沒有滿足條件的規(guī)則時返回None# 測試專家系統(tǒng)print(infer(rules, 'A', 'B'))# 輸出: Cprint(infer(rules, 'B', 'C'))# 輸出: Dprint(infer(rules, 'A', 'C'))# 輸出: Eprint(infer(rules, 'B', 'B'))# 輸出: E
三、決策樹類的模型
決策樹模型是一種非參數(shù)的分類和回歸方法,它利用樹形圖表示決策過程。更通俗來講,樹模型的數(shù)學(xué)描述就是“分段函數(shù)”。它利用信息論中的熵理論選擇決策樹的最佳劃分屬性,以構(gòu)建出一棵具有最佳分類性能的決策樹。
決策樹模型的基本原理是遞歸地將數(shù)據(jù)集劃分成若干個子數(shù)據(jù)集,直到每個子數(shù)據(jù)集都屬于同一類別或者滿足某個停止條件。在劃分過程中,決策樹模型采用信息增益、信息增益率、基尼指數(shù)等指標(biāo)來評估劃分的好壞,以選擇最佳的劃分屬性。
決策樹模型的代表模型有很多,其中最著名的有ID3、C4.5、CART等。ID3算法是決策樹算法的鼻祖,它采用信息增益來選擇最佳劃分屬性;C4.5算法是ID3算法的改進(jìn)版,它采用信息增益率來選擇最佳劃分屬性,同時采用剪枝策略來提高決策樹的泛化能力;CART算法則是分類和回歸樹的簡稱,它采用基尼指數(shù)來選擇最佳劃分屬性,并能夠處理連續(xù)屬性和有序?qū)傩浴?/span>
以下是使用Python中的Scikit-learn庫實現(xiàn)CART算法的代碼示例:
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.tree import DecisionTreeClassifier, plot_tree# 加載數(shù)據(jù)集iris = load_iris()X = iris.datay = iris.target# 劃分訓(xùn)練集和測試集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 構(gòu)建決策樹模型clf = DecisionTreeClassifier(criterinotallow='gini')clf.fit(X_train, y_train)# 預(yù)測測試集結(jié)果y_pred = clf.predict(X_test)# 可視化決策樹plot_tree(clf)
四、概率類的模型
概率模型是一種基于概率論的數(shù)學(xué)模型,用于描述隨機(jī)現(xiàn)象或事件的分布、發(fā)生概率以及它們之間的概率關(guān)系。概率模型在各個領(lǐng)域都有廣泛的應(yīng)用,如統(tǒng)計學(xué)、經(jīng)濟(jì)學(xué)、機(jī)器學(xué)習(xí)等。
概率模型的原理基于概率論和統(tǒng)計學(xué)的基本原理。它使用概率分布來描述隨機(jī)變量的分布情況,并使用概率規(guī)則來描述事件之間的條件關(guān)系。通過這些原理,概率模型可以對隨機(jī)現(xiàn)象或事件進(jìn)行定量分析和預(yù)測。
代表模型主要有:樸素貝葉斯分類器、貝葉斯網(wǎng)絡(luò)、隱馬爾可夫模型。其中,樸素貝葉斯分類器和邏輯回歸都基于貝葉斯定理,它們都使用概率來表示分類的不確定性。
隱馬爾可夫模型和貝葉斯網(wǎng)絡(luò)都是基于概率的模型,可用于描述隨機(jī)序列和隨機(jī)變量之間的關(guān)系。
樸素貝葉斯分類器和貝葉斯網(wǎng)絡(luò)都是基于概率的圖模型,可用于描述隨機(jī)變量之間的概率關(guān)系。
以下是使用Python中的Scikit-learn庫實現(xiàn)樸素貝葉斯分類器的代碼示例:
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.naive_bayes import GaussianNB# 加載數(shù)據(jù)集iris = load_iris()X = iris.datay = iris.target# 劃分訓(xùn)練集和測試集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 構(gòu)建樸素貝葉斯分類器模型clf = GaussianNB()clf.fit(X_train, y_train)# 預(yù)測測試集結(jié)果y_pred = clf.predict(X_test)
五、近鄰類的模型
近鄰類模型(本來想命名為距離類模型,但是距離類的定義就比較寬泛了)是一種非參數(shù)的分類和回歸方法,它基于實例的學(xué)習(xí)不需要明確的訓(xùn)練和測試集的劃分。它通過測量不同數(shù)據(jù)點之間的距離來決定數(shù)據(jù)的相似性。
以KNN算法為例,其核心思想是,如果一個樣本在特征空間中的 k 個最接近的訓(xùn)練樣本中的大多數(shù)屬于某一個類別,則該樣本也屬于這個類別。KNN算法基于實例的學(xué)習(xí)不需要明確的訓(xùn)練和測試集的劃分,而是通過測量不同數(shù)據(jù)點之間的距離來決定數(shù)據(jù)的相似性。
代表模型有:k-近鄰算法(k-Nearest Neighbors,KNN)、半徑搜索(Radius Search)、K-means、權(quán)重KNN、多級分類KNN(Multi-level Classification KNN)、近似最近鄰算法(Approximate Nearest Neighbor, ANN)
近鄰模型基于相似的原理,即通過測量不同數(shù)據(jù)點之間的距離來決定數(shù)據(jù)的相似性。
除了最基礎(chǔ)的KNN算法外,其他變種如權(quán)重KNN和多級分類KNN都在基礎(chǔ)算法上進(jìn)行了改進(jìn),以更好地適應(yīng)不同的分類問題。
近似最近鄰算法(ANN)是一種通過犧牲精度來換取時間和空間的方式,從大量樣本中獲取最近鄰的方法。ANN算法通過降低存儲空間和提高查找效率來處理大規(guī)模數(shù)據(jù)集。它通過“近似”的方法來減少搜索時間,這種方法允許在搜索過程中存在少量誤差。
以下是使用Python中的Scikit-learn庫實現(xiàn)KNN算法的代碼示例:
from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifier# 加載數(shù)據(jù)集iris = load_iris()X = iris.datay = iris.target# 劃分訓(xùn)練集和測試集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 構(gòu)建KNN分類器模型knn = KNeighborsClassifier(n_neighbors=3)knn.fit(X_train, y_train)# 預(yù)測測試集結(jié)果y_pred = knn.predict(X_test)
六、集成學(xué)習(xí)類的模型
集成學(xué)習(xí)(Ensemble Learning)不僅僅是一類的模型,更是一種多模型融合的思想,通過將多個學(xué)習(xí)器的預(yù)測結(jié)果進(jìn)行合并,以提高整體的預(yù)測精度和穩(wěn)定性。在實際應(yīng)用中,集成學(xué)習(xí)無疑是數(shù)據(jù)挖掘的神器!
集成學(xué)習(xí)的核心思想是通過集成多個基學(xué)習(xí)器來提高整體的預(yù)測性能。具體來說,通過將多個學(xué)習(xí)器的預(yù)測結(jié)果進(jìn)行合并,可以減少單一學(xué)習(xí)器的過擬合和欠擬合問題,提高模型的泛化能力。同時,通過引入多樣性(如不同的基學(xué)習(xí)器、不同的訓(xùn)練數(shù)據(jù)等),可以進(jìn)一步提高模型的性能。常用的集成學(xué)習(xí)方法有:
- Bagging是一種通過引入多樣性和減少方差來提高模型穩(wěn)定性和泛化能力的集成學(xué)習(xí)方法。它可以應(yīng)用于任何分類或回歸算法。
- Boosting是一種通過引入多樣性和改變基學(xué)習(xí)器的重要性來提高模型性能的集成學(xué)習(xí)方法。它也是一種可以應(yīng)用于任何分類或回歸算法的通用技術(shù)。
- stack堆疊是一種更高級的集成學(xué)習(xí)方法,它將不同的基學(xué)習(xí)器組合成一個層次結(jié)構(gòu),并通過一個元學(xué)習(xí)器對它們進(jìn)行整合。堆疊可以用于分類或回歸問題,并通常用于提高模型的泛化能力。
集成學(xué)習(xí)代表模型有:隨機(jī)森林、孤立森林、GBDT、Adaboost、Xgboost等。以下是使用Python中的Scikit-learn庫實現(xiàn)隨機(jī)森林算法的代碼示例:
from sklearn.ensemble import RandomForestClassifierfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_split# 加載數(shù)據(jù)集iris = load_iris()X = iris.datay = iris.target# 劃分訓(xùn)練集和測試集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 構(gòu)建隨機(jī)森林分類器模型clf = RandomForestClassifier(n_estimators=100, random_state=42)clf.fit(X_train, y_train)# 預(yù)測測試集結(jié)果y_pred = clf.predict(X_test)
綜上,我們通過將相似原理的模型歸納為各種類別,以此逐個類別地探索其原理,可以更為系統(tǒng)全面地了解模型的原理及聯(lián)系。希望對大家有所幫助!
The above is the detailed content of Transparent! An in-depth analysis of the principles of major machine learning models!. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

User voice input is captured and sent to the PHP backend through the MediaRecorder API of the front-end JavaScript; 2. PHP saves the audio as a temporary file and calls STTAPI (such as Google or Baidu voice recognition) to convert it into text; 3. PHP sends the text to an AI service (such as OpenAIGPT) to obtain intelligent reply; 4. PHP then calls TTSAPI (such as Baidu or Google voice synthesis) to convert the reply to a voice file; 5. PHP streams the voice file back to the front-end to play, completing interaction. The entire process is dominated by PHP to ensure seamless connection between all links.

To realize text error correction and syntax optimization with AI, you need to follow the following steps: 1. Select a suitable AI model or API, such as Baidu, Tencent API or open source NLP library; 2. Call the API through PHP's curl or Guzzle and process the return results; 3. Display error correction information in the application and allow users to choose whether to adopt it; 4. Use php-l and PHP_CodeSniffer for syntax detection and code optimization; 5. Continuously collect feedback and update the model or rules to improve the effect. When choosing AIAPI, focus on evaluating accuracy, response speed, price and support for PHP. Code optimization should follow PSR specifications, use cache reasonably, avoid circular queries, review code regularly, and use X

Use Seaborn's jointplot to quickly visualize the relationship and distribution between two variables; 2. The basic scatter plot is implemented by sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter"), the center is a scatter plot, and the histogram is displayed on the upper and lower and right sides; 3. Add regression lines and density information to a kind="reg", and combine marginal_kws to set the edge plot style; 4. When the data volume is large, it is recommended to use "hex"

To integrate AI sentiment computing technology into PHP applications, the core is to use cloud services AIAPI (such as Google, AWS, and Azure) for sentiment analysis, send text through HTTP requests and parse returned JSON results, and store emotional data into the database, thereby realizing automated processing and data insights of user feedback. The specific steps include: 1. Select a suitable AI sentiment analysis API, considering accuracy, cost, language support and integration complexity; 2. Use Guzzle or curl to send requests, store sentiment scores, labels, and intensity information; 3. Build a visual dashboard to support priority sorting, trend analysis, product iteration direction and user segmentation; 4. Respond to technical challenges, such as API call restrictions and numbers

String lists can be merged with join() method, such as ''.join(words) to get "HelloworldfromPython"; 2. Number lists must be converted to strings with map(str, numbers) or [str(x)forxinnumbers] before joining; 3. Any type list can be directly converted to strings with brackets and quotes, suitable for debugging; 4. Custom formats can be implemented by generator expressions combined with join(), such as '|'.join(f"[{item}]"foriteminitems) output"[a]|[

Install pyodbc: Use the pipinstallpyodbc command to install the library; 2. Connect SQLServer: Use the connection string containing DRIVER, SERVER, DATABASE, UID/PWD or Trusted_Connection through the pyodbc.connect() method, and support SQL authentication or Windows authentication respectively; 3. Check the installed driver: Run pyodbc.drivers() and filter the driver name containing 'SQLServer' to ensure that the correct driver name is used such as 'ODBCDriver17 for SQLServer'; 4. Key parameters of the connection string

pandas.melt() is used to convert wide format data into long format. The answer is to define new column names by specifying id_vars retain the identification column, value_vars select the column to be melted, var_name and value_name, 1.id_vars='Name' means that the Name column remains unchanged, 2.value_vars=['Math','English','Science'] specifies the column to be melted, 3.var_name='Subject' sets the new column name of the original column name, 4.value_name='Score' sets the new column name of the original value, and finally generates three columns including Name, Subject and Score.

Pythoncanbeoptimizedformemory-boundoperationsbyreducingoverheadthroughgenerators,efficientdatastructures,andmanagingobjectlifetimes.First,usegeneratorsinsteadofliststoprocesslargedatasetsoneitematatime,avoidingloadingeverythingintomemory.Second,choos
