Advanced Guide to Python asyncio: From Beginner to Expert
Mar 04, 2024 am 09:43 AMConcurrent and Asynchronous Programming
Concurrent programming Handles multiple tasks that are executed simultaneously. Asynchronous Programming is a type of concurrent programming in which tasks do not block threads. asyncio is a library for asynchronous programming in python, which allows programs to perform I/O operations without blocking the main thread.
Event Loop
The core of asyncio is the event loop, which monitors I/O events and schedules corresponding tasks. When a coroutine is ready, the event loop executes it until it waits for I/O operations. It then pauses the coroutine and continues executing other coroutines.
Coroutine
Coroutines are functions that can pause and resume execution. async def keyword is used to create coroutines. The coroutine uses the await keyword to wait for the I/O operation to complete.
Basics of asyncio
The following code demonstrates the basics of asyncio:
import asyncio async def main(): # 使用 asyncio.sleep() 模擬 I/O 操作 await asyncio.sleep(1) print("Hello, world!") asyncio.run(main())
Advanced asyncio
Task
Tasks are independent units of parallel execution in asyncio. The asyncio.create_task() function is used to create tasks.
Coroutine pool
The coroutine pool is a group of coroutines that are executed simultaneously by the event loop. The asyncio.gather() function is used to create a coroutine pool, which returns a coroutine that collects the results of all coroutines.
Signal processing
asyncio supports using the asyncio.ensure_future() function to handle signals. This allows coroutines to be executed within signal handlers.
Cancel coroutine
Coroutines can be canceled by calling the asyncio.Task.cancel() method. A canceled coroutine will raise the asyncio.CancelledError exception.
Debugging skills
- Use asyncio.get_event_loop() to get the event loop
- Use asyncio.gather() to track coroutine execution
- Use asyncio.create_task_group() to create a coroutine group and track its status
Monitoring and Performance
- Use aiomonitor library to monitor asyncio performance
- Use the uvloop library to improve event loop performance
Best Practices
- Avoid blocking I/O operations
- Parallelization using task and coroutine pools
- Properly handle signals and exceptions
- Monitoring and OptimizationPerformance
From beginner to expert
This guide provides a comprehensive overview of asyncio, from beginner to expert. By practicing and exploring advanced topics, you can master the power of asynchronous programming and build efficient and responsive applications in Python.
The above is the detailed content of Advanced Guide to Python asyncio: From Beginner to Expert. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

The way to access nested JSON objects in Python is to first clarify the structure and then index layer by layer. First, confirm the hierarchical relationship of JSON, such as a dictionary nested dictionary or list; then use dictionary keys and list index to access layer by layer, such as data "details"["zip"] to obtain zip encoding, data "details"[0] to obtain the first hobby; to avoid KeyError and IndexError, the default value can be set by the .get() method, or the encapsulation function safe_get can be used to achieve secure access; for complex structures, recursively search or use third-party libraries such as jmespath to handle.

To test the API, you need to use Python's Requests library. The steps are to install the library, send requests, verify responses, set timeouts and retry. First, install the library through pipinstallrequests; then use requests.get() or requests.post() and other methods to send GET or POST requests; then check response.status_code and response.json() to ensure that the return result is in compliance with expectations; finally, add timeout parameters to set the timeout time, and combine the retrying library to achieve automatic retry to enhance stability.

Asynchronous programming is made easier in Python with async and await keywords. It allows writing non-blocking code to handle multiple tasks concurrently, especially for I/O-intensive operations. asyncdef defines a coroutine that can be paused and restored, while await is used to wait for the task to complete without blocking the entire program. Running asynchronous code requires an event loop. It is recommended to start with asyncio.run(). Asyncio.gather() is available when executing multiple coroutines concurrently. Common patterns include obtaining multiple URL data at the same time, reading and writing files, and processing of network services. Notes include: Use libraries that support asynchronously, such as aiohttp; CPU-intensive tasks are not suitable for asynchronous; avoid mixed

In Python, variables defined inside a function are local variables and are only valid within the function; externally defined are global variables that can be read anywhere. 1. Local variables are destroyed as the function is executed; 2. The function can access global variables but cannot be modified directly, so the global keyword is required; 3. If you want to modify outer function variables in nested functions, you need to use the nonlocal keyword; 4. Variables with the same name do not affect each other in different scopes; 5. Global must be declared when modifying global variables, otherwise UnboundLocalError error will be raised. Understanding these rules helps avoid bugs and write more reliable functions.

To create modern and efficient APIs using Python, FastAPI is recommended; it is based on standard Python type prompts and can automatically generate documents, with excellent performance. After installing FastAPI and ASGI server uvicorn, you can write interface code. By defining routes, writing processing functions, and returning data, APIs can be quickly built. FastAPI supports a variety of HTTP methods and provides automatically generated SwaggerUI and ReDoc documentation systems. URL parameters can be captured through path definition, while query parameters can be implemented by setting default values ??for function parameters. The rational use of Pydantic models can help improve development efficiency and accuracy.

In Python, there is no need for temporary variables to swap two variables. The most common method is to unpack with tuples: a, b=b, a. This method first evaluates the right expression to generate a tuple (b, a), and then unpacks it to the left variable, which is suitable for all data types. In addition, arithmetic operations (addition, subtraction, multiplication and division) can be used to exchange numerical variables, but only numbers and may introduce floating point problems or overflow risks; it can also be used to exchange integers, which can be implemented through three XOR operations, but has poor readability and is usually not recommended. In summary, tuple unpacking is the simplest, universal and recommended way.

Add timeout control to Python's for loop. 1. You can record the start time with the time module, and judge whether it is timed out in each iteration and use break to jump out of the loop; 2. For polling class tasks, you can use the while loop to match time judgment, and add sleep to avoid CPU fullness; 3. Advanced methods can consider threading or signal to achieve more precise control, but the complexity is high, and it is not recommended for beginners to choose; summary key points: manual time judgment is the basic solution, while is more suitable for time-limited waiting class tasks, sleep is indispensable, and advanced methods are suitable for specific scenarios.
