


How to make a GET request in Python using the requests library
Jul 09, 2025 am 02:25 AMThe key steps to using Python's requests library to make GET requests include: 1. Install the requests library and use pip install requests; 2. Send basic GET requests and use requests.get() to get the response; 3. Add parameters to pass dictionary using params; 4. Handle common problems such as setting timeout control and checking status codes; 5. Optionally set the request header to simulate browser access. These details ensure stable and efficient execution of GET requests.
Using Python's requests
library to make GET requests is actually quite simple. The key is to know how to pass parameters, handle responses and deal with common problems. Let’s talk about the key points directly below.

Install the requests library
If you haven't installed this library yet, you can install it with pip:
pip install requests
After installation, it can be used in the code. This step is very simple, but sometimes novices get stuck here, especially when the virtual environment is not activated.

Send the most basic GET request
Using requests.get()
is the standard way to initiate GET requests. The basic writing method is like this:
import requests response = requests.get('https://example.com') print(response.status_code) print(response.text)
This code will visit example.com and then output the status code and page content. Note that response.text
is a text format content. If it is a JSON interface, it is recommended to use response.json()
to automatically parse it.

Add request parameters
Many times you need to bring some parameters, such as query strings. At this time, you can use params
parameter to pass the dictionary:
params = { 'q': 'python', 'page': 2 } response = requests.get('https://api.example.com/search', params=params)
This will automatically be spelled into: https://api.example.com/search?q=python&page=2
. This method is clearer and safer than manually spelling URLs.
Handling FAQs: Timeout and Status Code
Network requests are not successful every time, so it is best to add timeout control:
response = requests.get('https://example.com', timeout=5)
If no return is returned for more than 5 seconds, an exception will be thrown. You can use try-except to capture.
Also, remember to check the status code:
- 200 means success
- 404 The resource cannot be found
- 403 It may be because of insufficient permissions or authentication is required
- 500 is an internal server error
Recommended judgment method:
if response.status_code == 200: data = response.json() else: print(f"Request failed, status code: {response.status_code}")
Set request header (optional but sometimes necessary)
Some websites or interfaces check User-Agent or other header information. At this time, you may need to simulate the browser access:
headers = { 'User-Agent': 'Mozilla/5.0' } response = requests.get('https://example.com', headers=headers)
Especially when crawling web pages, it is easy to be rejected without adding User-Agent.
Basically that's it. GET requests are not complicated, but some details are easy to ignore, such as timeout, status code processing, parameter delivery methods, etc. Taking all of this into consideration, your request will be much more stable.
The above is the detailed content of How to make a GET request in Python using the requests library. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not
