国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table of Contents
How Python's Garbage Collector Works
When Does Garbage Collection Happen?
Controlling Garbage Collection
What Gets Collected (and What Doesn't)
Home Backend Development Python Tutorial Describe Python garbage collection in Python.

Describe Python garbage collection in Python.

Jul 03, 2025 am 02:07 AM
python Garbage collection

Python's garbage collection mechanism automatically manages memory through reference counting and periodic garbage collection. Its core method is reference counting, which immediately releases memory when the number of references of an object is zero; but it cannot handle circular references, so a garbage collection module (gc) is introduced to detect and clean the loop. Garbage collection is usually triggered when the reference count decreases during program operation, the allocation and release difference exceeds the threshold, or when gc.collect() is called manually. Users can turn off automatic recycling through gc.disable(), manually execute gc.collect(), and adjust thresholds to achieve control through gc.set_threshold(). Not all objects participate in loop recycling. For example, objects that do not contain references are processed by reference counting. Built-in types such as int and string do not participate in loop recycling, and classes that define __del__ methods may affect recycling behavior.

Describe Python garbage collection in Python.

Python handles memory management automatically, and a big part of that is garbage collection. The main idea is that Python keeps track of which objects are still in use and cleans up the ones that aren't — freeing up memory without you having to do it manually.

Describe Python garbage collection in Python.

How Python's Garbage Collector Works

At its core, Python uses reference counting as the primary method. Every object has a count of how many references point to it. When that count drops to zero, the memory is immediately freed.

Describe Python garbage collection in Python.

But reference counting alone can't catch everything — especially circular references , where two or more objects refer to each other but are otherwise unreachable.

For those cases, Python also includes a garbage collector module (gc) that runs periodically to detect and clean up these cycles.

Describe Python garbage collection in Python.

When Does Garbage Collection Happen?

Garbage collection usually happens behind the scenes. Here's when it kicks in:

  • During normal program execution, when reference counts drop.
  • When the number of allocations minus deallocations exceeds a threshold — this triggers the cyclic garbage collector.
  • You can also trigger it manually using gc.collect() if needed.

This automatic behavior works well for most applications, but in performance-sensitive or long-running programs, understanding when GC runs can help avoid unexpected pauses.

Controlling Garbage Collection

If you're working with large data structures or need more control over memory cleanup, Python lets you tweak the garbage collector via the gc module.

Some common things you might do:

  • Turn off automatic collection: gc.disable()
  • Run a manual collection: gc.collect()
  • Adjust thresholds: gc.set_threshold()

This level of control is useful in things like game loops, real-time systems, or services where timing consistency matters.

What Gets Collected (and What Doesn't)

Not all objects are treated the same during garbage collection. For example:

  • Objects that don't contain references to other objects may be handled purely by reference counting.
  • Objects involved in circular references (like lists containing themselves) are tracked by the garbage collector.
  • Some built-in types (like ints or strings) don't participate in cyclic GC because they can't form cycles.

Also, if your class defines __del__ , it can affect how objects are collected — sometimes delaying or complicating the process.

Basically, Python's garbage collection system does most of the heavy lifting for you, but knowing how it works helps you write better-performing and memory-efficient code.

The above is the detailed content of Describe Python garbage collection in Python.. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1502
276
python seaborn jointplot example python seaborn jointplot example Jul 26, 2025 am 08:11 AM

Use Seaborn's jointplot to quickly visualize the relationship and distribution between two variables; 2. The basic scatter plot is implemented by sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter"), the center is a scatter plot, and the histogram is displayed on the upper and lower and right sides; 3. Add regression lines and density information to a kind="reg", and combine marginal_kws to set the edge plot style; 4. When the data volume is large, it is recommended to use "hex"

A Deep Dive into PHP's Internal Garbage Collection Mechanism A Deep Dive into PHP's Internal Garbage Collection Mechanism Jul 28, 2025 am 04:44 AM

PHP's garbage collection mechanism is based on reference counting, but circular references need to be processed by a periodic circular garbage collector; 1. Reference count releases memory immediately when there is no reference to the variable; 2. Reference reference causes memory to be unable to be automatically released, and it depends on GC to detect and clean it; 3. GC is triggered when the "possible root" zval reaches the threshold or manually calls gc_collect_cycles(); 4. Long-term running PHP applications should monitor gc_status() and call gc_collect_cycles() in time to avoid memory leakage; 5. Best practices include avoiding circular references, using gc_disable() to optimize performance key areas, and dereference objects through the ORM's clear() method.

python pandas melt example python pandas melt example Jul 27, 2025 am 02:48 AM

pandas.melt() is used to convert wide format data into long format. The answer is to define new column names by specifying id_vars retain the identification column, value_vars select the column to be melted, var_name and value_name, 1.id_vars='Name' means that the Name column remains unchanged, 2.value_vars=['Math','English','Science'] specifies the column to be melted, 3.var_name='Subject' sets the new column name of the original column name, 4.value_name='Score' sets the new column name of the original value, and finally generates three columns including Name, Subject and Score.

Optimizing Python for Memory-Bound Operations Optimizing Python for Memory-Bound Operations Jul 28, 2025 am 03:22 AM

Pythoncanbeoptimizedformemory-boundoperationsbyreducingoverheadthroughgenerators,efficientdatastructures,andmanagingobjectlifetimes.First,usegeneratorsinsteadofliststoprocesslargedatasetsoneitematatime,avoidingloadingeverythingintomemory.Second,choos

python connect to sql server pyodbc example python connect to sql server pyodbc example Jul 30, 2025 am 02:53 AM

Install pyodbc: Use the pipinstallpyodbc command to install the library; 2. Connect SQLServer: Use the connection string containing DRIVER, SERVER, DATABASE, UID/PWD or Trusted_Connection through the pyodbc.connect() method, and support SQL authentication or Windows authentication respectively; 3. Check the installed driver: Run pyodbc.drivers() and filter the driver name containing 'SQLServer' to ensure that the correct driver name is used such as 'ODBCDriver17 for SQLServer'; 4. Key parameters of the connection string

python django forms example python django forms example Jul 27, 2025 am 02:50 AM

First, define a ContactForm form containing name, mailbox and message fields; 2. In the view, the form submission is processed by judging the POST request, and after verification is passed, cleaned_data is obtained and the response is returned, otherwise the empty form will be rendered; 3. In the template, use {{form.as_p}} to render the field and add {%csrf_token%} to prevent CSRF attacks; 4. Configure URL routing to point /contact/ to the contact_view view; use ModelForm to directly associate the model to achieve data storage. DjangoForms implements integrated processing of data verification, HTML rendering and error prompts, which is suitable for rapid development of safe form functions.

What is statistical arbitrage in cryptocurrencies? How does statistical arbitrage work? What is statistical arbitrage in cryptocurrencies? How does statistical arbitrage work? Jul 30, 2025 pm 09:12 PM

Introduction to Statistical Arbitrage Statistical Arbitrage is a trading method that captures price mismatch in the financial market based on mathematical models. Its core philosophy stems from mean regression, that is, asset prices may deviate from long-term trends in the short term, but will eventually return to their historical average. Traders use statistical methods to analyze the correlation between assets and look for portfolios that usually change synchronously. When the price relationship of these assets is abnormally deviated, arbitrage opportunities arise. In the cryptocurrency market, statistical arbitrage is particularly prevalent, mainly due to the inefficiency and drastic fluctuations of the market itself. Unlike traditional financial markets, cryptocurrencies operate around the clock and their prices are highly susceptible to breaking news, social media sentiment and technology upgrades. This constant price fluctuation frequently creates pricing bias and provides arbitrageurs with

python iter and next example python iter and next example Jul 29, 2025 am 02:20 AM

iter() is used to obtain the iterator object, and next() is used to obtain the next element; 1. Use iterator() to convert iterable objects such as lists into iterators; 2. Call next() to obtain elements one by one, and trigger StopIteration exception when the elements are exhausted; 3. Use next(iterator, default) to avoid exceptions; 4. Custom iterators need to implement the __iter__() and __next__() methods to control iteration logic; using default values is a common way to safe traversal, and the entire mechanism is concise and practical.

See all articles