


How to Ensure Correct Object Equality for LINQ's Distinct Method with Custom Objects?
Jan 20, 2025 pm 07:41 PMUse IEquatable to handle object equality in LINQ Distinct
LINQ's Distinct
method is designed to identify unique objects based on their equality. However, with custom objects, it may not always work as expected.
In the provided example, the Distinct
method failed to identify two Author
objects with the same name as duplicates. This is because LINQ treats objects as distinct based on their reference addresses rather than their property values.
In order to solve this problem, the Author
interface can be implemented in the IEquatable
class. By overriding the Equals
method, you can define custom logic to determine equality based on property values ??FirstName
and LastName
. The following implementation checks matching values ??in two fields to determine equality:
public class Author : IEquatable<Author> { public string FirstName { get; set; } public string LastName { get; set; } public bool Equals(Author other) { if (FirstName == other?.FirstName && LastName == other?.LastName) return true; return false; } // 為保持一致性而重寫GetHashCode public override int GetHashCode() { return (FirstName?.GetHashCode() ?? 0) ^ (LastName?.GetHashCode() ?? 0); } }
Usage:
Applying this custom implementation solves Distinct
's problem. The modified code correctly identifies duplicate Author
objects and removes one of them from the results:
using System.Collections.Generic; using System.Linq; class Program { static void Main(string[] args) { // 使用重復(fù)作者初始化書籍列表 List<Book> books = new List<Book> { new Book { Name = "C# in Depth", Authors = new List<Author> { new Author { FirstName = "Jon", LastName = "Skeet" }, new Author { FirstName = "Jon", LastName = "Skeet" }, } }, // ... }; // 選擇作者,應(yīng)用Distinct,并打印 var temp = books.SelectMany(book => book.Authors).Distinct(); foreach (var author in temp) { Console.WriteLine($"{author.FirstName} {author.LastName}"); } Console.Read(); } }
Conclusion:
Implementing IEquatable
and overriding the Equals
method allows customizing the definition of object equality in LINQ operations. This ensures that Distinct
methods correctly handle custom objects based on their properties rather than reference addresses.
Note that the GetHashCode
method has been improved in the code example to ensure consistency with the Equals
method and uses the null-conditional operator (?.) to handle potentially null properties. This avoids potential NullReferenceException
exceptions.
The above is the detailed content of How to Ensure Correct Object Equality for LINQ's Distinct Method with Custom Objects?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C destructorsarespecialmemberfunctionsthatautomaticallyreleaseresourceswhenanobjectgoesoutofscopeorisdeleted.1)Theyarecrucialformanagingmemory,filehandles,andnetworkconnections.2)Beginnersoftenneglectdefiningdestructorsfordynamicmemory,leadingtomemo
