The rapid advancement of big data and AI has made web crawlers essential for data collection and analysis. In 2025, efficient, reliable, and secure crawlers dominate the market. This article highlights several leading web crawling tools, enhanced by 98IP proxy services, along with practical code examples to streamline your data acquisition process.
I. Key Considerations When Choosing a Crawler
- Efficiency: Rapid and accurate data extraction from target websites.
- Stability: Uninterrupted operation despite anti-crawler measures.
- Security: Protection of user privacy and avoidance of website overload or legal issues.
- Scalability: Customizable configurations and seamless integration with other data processing systems.
II. Top Web Crawling Tools for 2025
1. Scrapy 98IP Proxy
Scrapy, an open-source, collaborative framework, excels at multi-threaded crawling, ideal for large-scale data collection. 98IP's stable proxy service effectively circumvents website access restrictions.
Code Example:
import scrapy from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware import random # Proxy IP pool PROXY_LIST = [ 'http://proxy1.98ip.com:port', 'http://proxy2.98ip.com:port', # Add more proxy IPs... ] class MySpider(scrapy.Spider): name = 'my_spider' start_urls = ['https://example.com'] custom_settings = { 'DOWNLOADER_MIDDLEWARES': { HttpProxyMiddleware.name: 410, # Proxy Middleware Priority }, 'HTTP_PROXY': random.choice(PROXY_LIST), # Random proxy selection } def parse(self, response): # Page content parsing pass
2. BeautifulSoup Requests 98IP Proxy
For smaller websites with simpler structures, BeautifulSoup and the Requests library provide a quick solution for page parsing and data extraction. 98IP proxies enhance flexibility and success rates.
Code Example:
import requests from bs4 import BeautifulSoup import random # Proxy IP pool PROXY_LIST = [ 'http://proxy1.98ip.com:port', 'http://proxy2.98ip.com:port', # Add more proxy IPs... ] def fetch_page(url): proxy = random.choice(PROXY_LIST) try: response = requests.get(url, proxies={'http': proxy, 'https': proxy}) response.raise_for_status() # Request success check return response.text except requests.RequestException as e: print(f"Error fetching {url}: {e}") return None def parse_page(html): soup = BeautifulSoup(html, 'html.parser') # Data parsing based on page structure pass if __name__ == "__main__": url = 'https://example.com' html = fetch_page(url) if html: parse_page(html)
3. Selenium 98IP Proxy
Selenium, primarily an automated testing tool, is also effective for web crawling. It simulates user browser actions (clicks, input, etc.), handling websites requiring logins or complex interactions. 98IP proxies bypass behavior-based anti-crawler mechanisms.
Code Example:
from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.proxy import Proxy, ProxyType import random # Proxy IP pool PROXY_LIST = [ 'http://proxy1.98ip.com:port', 'http://proxy2.98ip.com:port', # Add more proxy IPs... ] chrome_options = Options() chrome_options.add_argument("--headless") # Headless mode # Proxy configuration proxy = Proxy({ 'proxyType': ProxyType.MANUAL, 'httpProxy': random.choice(PROXY_LIST), 'sslProxy': random.choice(PROXY_LIST), }) chrome_options.add_argument("--proxy-server={}".format(proxy.proxy_str)) service = Service(executable_path='/path/to/chromedriver') # Chromedriver path driver = webdriver.Chrome(service=service, options=chrome_options) driver.get('https://example.com') # Page manipulation and data extraction # ... driver.quit()
4. Pyppeteer 98IP Proxy
Pyppeteer, a Python wrapper for Puppeteer (a Node library for automating Chrome/Chromium), offers Puppeteer's functionality within Python. It's well-suited for scenarios requiring user behavior simulation.
Code Example:
import asyncio from pyppeteer import launch import random async def fetch_page(url, proxy): browser = await launch(headless=True, args=[f'--proxy-server={proxy}']) page = await browser.newPage() await page.goto(url) content = await page.content() await browser.close() return content async def main(): # Proxy IP pool PROXY_LIST = [ 'http://proxy1.98ip.com:port', 'http://proxy2.98ip.com:port', # Add more proxy IPs... ] url = 'https://example.com' proxy = random.choice(PROXY_LIST) html = await fetch_page(url, proxy) # Page content parsing # ... if __name__ == "__main__": asyncio.run(main())
III. Conclusion
Modern web crawling tools (2025) offer significant improvements in efficiency, stability, security, and scalability. Integrating 98IP proxy services further enhances flexibility and success rates. Choose the tool best suited to your target website's characteristics and requirements, and configure proxies effectively for efficient and secure data crawling.
The above is the detailed content of The best web crawler tools in 5. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not

Python's datetime module can meet basic date and time processing requirements. 1. You can get the current date and time through datetime.now(), or you can extract .date() and .time() respectively. 2. Can manually create specific date and time objects, such as datetime(year=2025, month=12, day=25, hour=18, minute=30). 3. Use .strftime() to output strings in format. Common codes include %Y, %m, %d, %H, %M, and %S; use strptime() to parse the string into a datetime object. 4. Use timedelta for date shipping

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The "Hello,World!" program is the most basic example written in Python, which is used to demonstrate the basic syntax and verify that the development environment is configured correctly. 1. It is implemented through a line of code print("Hello,World!"), and after running, the specified text will be output on the console; 2. The running steps include installing Python, writing code with a text editor, saving as a .py file, and executing the file in the terminal; 3. Common errors include missing brackets or quotes, misuse of capital Print, not saving as .py format, and running environment errors; 4. Optional tools include local text editor terminal, online editor (such as replit.com)

TuplesinPythonareimmutabledatastructuresusedtostorecollectionsofitems,whereaslistsaremutable.Tuplesaredefinedwithparenthesesandcommas,supportindexing,andcannotbemodifiedaftercreation,makingthemfasterandmorememory-efficientthanlists.Usetuplesfordatain

To generate a random string, you can use Python's random and string module combination. The specific steps are: 1. Import random and string modules; 2. Define character pools such as string.ascii_letters and string.digits; 3. Set the required length; 4. Call random.choices() to generate strings. For example, the code includes importrandom and importstring, set length=10, characters=string.ascii_letters string.digits and execute ''.join(random.c
