I just recently posted a blog about Annotating functions in Typescript. I just finished doing a bit of a study and understood more on how to annotate functions in Python and this blog is going to be all about annotating Python functions with similar examples to the last blog.
You can validate your type annotations in Visual Studio Code by setting python.analysis.typeCheckingMode to one of basic, standard, strict,. basic and standard options doesn't necessarily make sure you annotate your functions and variables but strict does.
Function Values
This might shock you but you can return functions and pass functions as values in Python. Callback functions are actually annotated using the Callable type which is written like this;
Callable[[argtype1, argtype2, argtype3], returnType]
For instance, a function length(text: str) -> int will be annotated as Callable[[str], int]
For example;
This function in JavaScript
function multiplier(factor){ return value => factor * value } const n = multiplier(6) n(8) // 48
can be written like this in Python
def multiplier(factor): ? ? def inner(value): ? ? ? ? return value * factor ? ? return inner ? ? n = multiplier(6) n(8) #48
We can create a TypeAlias called number which is a Union (literally) of both an int and a float like;
from typing import TypeAlias, Union number: TypeAlias = Union[int, float]
To approach the parameters as JavaScript numbers.
So therefore, to annotate this function, we have;
def multiplier(factor: number) -> Callable[[number], number]: def inner(value: number) -> inner: return value * factor return inner a = multiplier(4.5) a(3) #13.5
Generic functions
The classic generic function example is
def pick(array, index): return array[index] pick([1,2,3], 2) #3
Using TypeVar we can now create generic verbose (more verbose than typescript).
from typing import TypeVar T = TypeVar("T") # the argument and the name of the variable should be the same
so that we have
from typing import TypeVar, Sequence def pick(array: Sequence[T], index: int) -> T: return array[index] print(pick([1,2,3,4], 2))
So what about a custom myMap function that acts like map in JavaScript. such that we have;
Remember: map() in Python returns an Iterable type not a List type
def myMap(array, fn): return map(fn, array) def twice(n): return n * 2 print(myMap([1,2,3], twice))
We can use a mixture of Callable and TypeVar types to annotate this function. Observe...
from typing import TypeVar, Iterable, Callable Input = TypeVar("Input") # Input and "Input" must be the same Output = TypeVar("Output") def myMap(array: Iterable[Input], fn: Callable[[Input], Output]) -> Iterable[Output]: return map(fn, array) def twice(n: int) -> int: return n * 2 print(myMap([1,2,3], twice))
or we can alias the Callable function
from typing import TypeVar, Iterable, Callable Input = TypeVar("Input") Output = TypeVar("Output") MappableFunction = Callable[[Input], Output] def myMap(array: Iterable[Input], fn: MappableFunction[Input, Output]) -> Iterable[Output]: return map(fn, array)
Observe that MappableFunction takes those generic types Input and Output and applies them to the context of Callable[[Input], Output].
Take a minute to think of how the myFilter function will be annotated?
Well if you thought of this
from typing import Iterable, TypeVar, Callable Input = TypeVar("Input") def myFilter(array: Iterable[Input], fn: Callable[[Input], bool]) -> Iterable[Input]: return filter(fn, array)
You're right
Generic Classes
I know I'm not supposed to be talking about class annotation but give me some time to explain generic classes.
If you came from the Typescript-verse, this was how you would define them
class GenericStore<Type>{ stores: Array<Type> = [] constructor(){ this.stores = [] } add(item: Type){ this.stores.push(item) } } const g1 = new GenericStore<string>(); //g1.stores: Array<string> g1.add("Hello") //only string are allowed
But in Python they are rather different and awkward.
- First we import the Generic type, then we make them the child of the Generic class
So to recreate this GenericStore class in Python
Callable[[argtype1, argtype2, argtype3], returnType]
Why should I learn how to annotate functions in Python?
As I have said in the former blog, It helps in building a much smarter type system which in turn reduces your chances of bugs (especially when using static file checkers like mypy). Also when writing libraries (or SDKs) using a robust type system can improve the productivity of the developer using the library by a margin (mostly because of editor suggestions)
If you have any questions or there are mistakes in this writing, feel free to share them in the comments below ?
The above is the detailed content of Annotating Functions in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not

Python's datetime module can meet basic date and time processing requirements. 1. You can get the current date and time through datetime.now(), or you can extract .date() and .time() respectively. 2. Can manually create specific date and time objects, such as datetime(year=2025, month=12, day=25, hour=18, minute=30). 3. Use .strftime() to output strings in format. Common codes include %Y, %m, %d, %H, %M, and %S; use strptime() to parse the string into a datetime object. 4. Use timedelta for date shipping

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The "Hello,World!" program is the most basic example written in Python, which is used to demonstrate the basic syntax and verify that the development environment is configured correctly. 1. It is implemented through a line of code print("Hello,World!"), and after running, the specified text will be output on the console; 2. The running steps include installing Python, writing code with a text editor, saving as a .py file, and executing the file in the terminal; 3. Common errors include missing brackets or quotes, misuse of capital Print, not saving as .py format, and running environment errors; 4. Optional tools include local text editor terminal, online editor (such as replit.com)

TuplesinPythonareimmutabledatastructuresusedtostorecollectionsofitems,whereaslistsaremutable.Tuplesaredefinedwithparenthesesandcommas,supportindexing,andcannotbemodifiedaftercreation,makingthemfasterandmorememory-efficientthanlists.Usetuplesfordatain

To generate a random string, you can use Python's random and string module combination. The specific steps are: 1. Import random and string modules; 2. Define character pools such as string.ascii_letters and string.digits; 3. Set the required length; 4. Call random.choices() to generate strings. For example, the code includes importrandom and importstring, set length=10, characters=string.ascii_letters string.digits and execute ''.join(random.c
