To `toupper()` and `tolower()`: Must We Cast to `unsigned char`?
Dec 27, 2024 am 08:54 AMWhen Calling toupper() and tolower(): Casting to unsigned char
While a highly reputable commenter on Stack Overflow suggests casting char-arguments to unsigned char before calling toupper or tolower, this necessity is not explicitly mentioned by Bjarne Stroustrup in "The C Programming Language." This difference in opinion sparks the question: is such a cast necessary or is it an oversight?
Types and Representations
char, signed char, and unsigned char are distinct types. While char commonly represents either a signed or unsigned representation, the toupper function requires an int argument representable as an unsigned char. If the argument is not representable or equal to EOF, undefined behavior occurs.
Undefined Behavior
Suppose plain char is of a signed type. If name[0] denotes a negative value, using toupper(name[0]) risks undefined behavior. However, for the example provided by Stroustrup, the initialization guarantees non-negative values.
Unnecessary Conversions
Nevertheless, converting char to (unsigned)char does not resolve the issue since it may still result in a negative int value due to the implicit conversion.
Practical Considerations
While toupper could be implemented to handle negative values, it's not mandatory. Additionally, these functions must accept arguments equal to EOF (-1), which is typically a negative value.
Conclusion
Despite its acceptance of EOF, toupper requires the input character to be representable as an unsigned char to prevent undefined behavior. While Stroustrup's example may not demonstrate a need for casting, it's a recommended practice to ensure portability and correct functionality, particularly when dealing with negative or special characters.
The above is the detailed content of To `toupper()` and `tolower()`: Must We Cast to `unsigned char`?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C destructorsarespecialmemberfunctionsthatautomaticallyreleaseresourceswhenanobjectgoesoutofscopeorisdeleted.1)Theyarecrucialformanagingmemory,filehandles,andnetworkconnections.2)Beginnersoftenneglectdefiningdestructorsfordynamicmemory,leadingtomemo
