


How to Implement a BigInt Class in C for Handling Arbitrarily Large Integers?
Dec 22, 2024 am 12:09 AMImplementing a BigInt Class in C
In C , when handling numbers larger than a long int, it is useful to create a custom "big int" class. Instead of relying on external implementations, consider creating your own to gain a deeper understanding of these concepts.
Data Structure
A straightforward approach involves storing the number as a string, breaking it down into smaller numbers (e.g., digits), and placing them in an array. This simplifies comparison operations but raises concerns for operations like addition and multiplication.
Algorithm Overview
For these operations, it is beneficial to consider the binary nature of integers. Implementing the addition operator ( =) as an example, iterate through each digit pair, and add them. If the result overflows the BaseType, carry over the excess into the next digit.
Code Example
template< class BaseType > BigInt< BaseType >& BigInt< BaseType >::operator += (BigInt< BaseType > const& operand) { BT count, carry = 0; for (count = 0; count < std::max(value_.size(), operand.value_.size(); count++) { BT op0 = count < value_.size() ? value_.at(count) : 0, op1 = count < operand.value_.size() ? operand.value_.at(count) : 0; BT digits_result = op0 + op1 + carry; if (digits_result-carry < std::max(op0, op1) { BT carry_old = carry; carry = digits_result; digits_result = (op0 + op1 + carry) >> sizeof(BT)*8; // NOTE [1] } else carry = 0; } return *this; }
Implementation Notes
- The BaseType is the underlying type of the BigInt, e.g., int or long.
- The value_ vector stores the individual digits of the number.
- carry tracks any overflow between digits.
- Overflow detection is done by comparing the result with the original digits.
Other Operators
Repeat this algorithmic approach for subtraction, multiplication, and division. Implement standard operators like << for output and < for comparison.
Conclusion
Building a custom BigInt class is a challenging but rewarding exercise. Following the steps outlined here can help you implement a functional and efficient class that handles arbitrarily large integers in C .
The above is the detailed content of How to Implement a BigInt Class in C for Handling Arbitrarily Large Integers?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C polymorphismisuniqueduetoitscombinationofcompile-timeandruntimepolymorphism,allowingforbothefficiencyandflexibility.Toharnessitspowerstylishly:1)Usesmartpointerslikestd::unique_ptrformemorymanagement,2)Ensurebaseclasseshavevirtualdestructors,3)Emp
