


How to Resolve `std::__cxx11::string` and `std::string` Incompatibility Issues When Linking Libraries?
Dec 19, 2024 am 12:39 AMConverting __cxx11::string to std::string: A Guide to Handling Incompatible Libraries
Encountering incompatibility between the std::__cxx11::string type and the regular std::string can be a frustrating issue. When trying to interface with libraries that may not be configured for C 11, the need arises to convert between these types. However, simply attempting to cast a std::__cxx11::string to a std::string using (string) doesn't suffice.
This issue can often manifest as linker errors, such as:
undefined reference to `H5::CompType::insertMember(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, unsigned long, H5::DataType const&) const'
Understanding the Ursache:
One possible cause for this incompatibility lies in the use of GCC 5. GCC 5 introduced dual ABIs for the C standard library, where code compiled with one ABI cannot be linked with code compiled with the other. If a third-party library was compiled with an older ABI while your code uses the newer ABI, linking issues can arise.
The Solution:
To resolve this issue, define the macro _GLIBCXX_USE_CXX11_ABI to 0 before including any standard library headers. This forces GCC to use the older ABI, ensuring compatibility with the third-party library.
#define _GLIBCXX_USE_CXX11_ABI 0 #include <iostream> #include <string>
With this macro defined, the linker should be able to successfully resolve the symbols and the conversion from std::__cxx11::string to std::string should proceed without errors.
The above is the detailed content of How to Resolve `std::__cxx11::string` and `std::string` Incompatibility Issues When Linking Libraries?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C destructorsarespecialmemberfunctionsthatautomaticallyreleaseresourceswhenanobjectgoesoutofscopeorisdeleted.1)Theyarecrucialformanagingmemory,filehandles,andnetworkconnections.2)Beginnersoftenneglectdefiningdestructorsfordynamicmemory,leadingtomemo
