国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Python Tutorial Optimizing OpenAI's GPT-mini to Detect AI-Generated Text Using DSPy

Optimizing OpenAI's GPT-mini to Detect AI-Generated Text Using DSPy

Nov 24, 2024 am 06:46 AM

Detecting AI-generated text has become a hot topic, with researchers and practitioners debating its feasibility and ethical implications. As models grow more sophisticated, distinguishing between human-written and AI-generated text becomes both an exciting challenge and a critical need.

In this post, we’ll explore how to harness DSPy’s optimization capabilities to fine-tune OpenAI’s GPT-4o-mini for this task using a fascinating dataset of 1.39 million text samples. By the end, you’ll know how to implement, evaluate, and optimize a basic AI-text detector using DSPy—no manual prompt engineering required.


Dataset Loading

First, let’s load the dataset, which contains text samples labeled as either human-written or AI-generated from varied human and LLM sources. To get started, ensure you’ve installed Python 3, along with the DSPy and hugging face datasets libraries:

pip install dspy datasets

The dataset is approximately 2GB in size, so depending on your internet speed, this step may take a few minutes.

Here’s the code to load and split the dataset evenly for training and testing:

from datasets import load_dataset

# Load the dataset
ds = load_dataset("artem9k/ai-text-detection-pile", split="train")

# For simplicity, we’ll do an even split of data for testing and training
NUM_EXAMPLES = 80  # Adjust this to experiment with dataset size
ds = ds.train_test_split(test_size=NUM_EXAMPLES, train_size=NUM_EXAMPLES)

Tip: You can adjust NUM_EXAMPLES to experiment with larger datasets or to reduce costs when running optimizations.


Model Setup

Next, we’ll create a basic DSPy predictor using OpenAI’s GPT-4o-mini. GPT-4o-mini is a lightweight version of OpenAI’s GPT-4o model, making it cost-efficient for experimentation. DSPy simplifies this process by using signatures, which define structured input-output mappings.

Replace "YOUR_API_KEY" with your OpenAI API key before running the code:

import dspy
from typing import Literal

# Initialize the OpenAI GPT-4o-mini model
lm = dspy.LM('openai/gpt-4o-mini', api_key="YOUR_API_KEY")
dspy.configure(lm=lm, experimental=True)

# Define the AI text detector signature
class DetectAiText(dspy.Signature):
    """Classify text as written by human or by AI."""
    text: str = dspy.InputField()
    source: Literal['ai', 'human'] = dspy.OutputField()

# Create a basic predictor
detector = dspy.Predict(DetectAiText)

Notice that we haven’t done any prompt engineering here. Instead, we rely on DSPy to handle that, as well as the input-output relationships automatically.

You can test the "detector" with some sample input:

print(detector(text="Hello world (this definitely wasn't written by AI)"))

The prediction will appear in the 'source' field of the output.


Evaluating the Detector

Now that we have a basic detector, let’s evaluate its performance using DSPy’s evaluation tools. For this, we’ll define a simple metric that checks if the model correctly predicts the text’s source (human or AI).

Here’s the code to set up and run the evaluation:

from dspy.evaluate import Evaluate

# Define a simple evaluation metric
def validate_text_source(example: dspy.Example, pred, trace=None) -> int:
    return 1 if example.source.lower() == pred.source.lower() else 0

# Transform the dataset into DSPy-compatible "Example" objects
dspy_trainset = [
    dspy.Example(source=x['source'], text=x['text']).with_inputs('text') for x in ds['train']
]
dspy_devset = [
    dspy.Example(source=x['source'], text=x['text']).with_inputs('text') for x in ds['test']
]

# Evaluate the detector
evaluator = Evaluate(devset=dspy_devset, num_threads=12)  # Adjust threads based on your system
evaluator(detector, metric=validate_text_source)

In my initial tests, I achieved an accuracy of 76%–81%. Note that results may vary due to the random sampling of the dataset.

Optimizing OpenAI’s GPT-mini to Detect AI-Generated Text Using DSPy


Optimizing with DSPy

The real power of DSPy lies in its optimization capabilities. By using the MIPROv2 optimizer, we can improve the detector’s performance without manually tweaking prompts. The optimizer automates this process using few-shot examples, dynamic templates, and self-supervised techniques.

Here’s how to set up and run the optimizer:

pip install dspy datasets

Note: The cost for a single optimization run with the "light" preset is typically less than $0.50 for a dataset of 80 examples.


Results and Iteration

After running the optimization, I observed a significant performance boost. My first run achieved an accuracy of 91.25%, compared to the baseline’s 76%–81%. Subsequent runs ranged between 81.2% and 91.25%, demonstrating consistent improvements with minimal effort.

Optimizing OpenAI’s GPT-mini to Detect AI-Generated Text Using DSPy

To load the optimized model for further use:

from datasets import load_dataset

# Load the dataset
ds = load_dataset("artem9k/ai-text-detection-pile", split="train")

# For simplicity, we’ll do an even split of data for testing and training
NUM_EXAMPLES = 80  # Adjust this to experiment with dataset size
ds = ds.train_test_split(test_size=NUM_EXAMPLES, train_size=NUM_EXAMPLES)

You can iterate further by:

  • Adjusting the optimizer’s auto parameter (light, medium, heavy), or setting hyper-parameters yourself.
  • Increasing the dataset size for training and evaluation.
  • Testing with more advanced or updated LLMs.

Conclusion

In just a few steps, we demonstrated how DSPy simplifies LLM optimization for real-world use cases. Without any manual prompt engineering, we achieved a measurable improvement in detecting AI-generated text. While this model isn’t perfect, DSPy’s flexibility allows for continuous iteration, making it a valuable tool for scalable AI development.

I'd highly recommend a read-through of DSPy’s documentation and experiment with other optimizers and LLM patterns.


Full code available on GitHub.

Question? Comments? Let me know, I look forward to seeing what you build with DSPy!

You can find me on LinkedIn | CTO & Partner @ EES.

The above is the detailed content of Optimizing OpenAI's GPT-mini to Detect AI-Generated Text Using DSPy. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How does Python's unittest or pytest framework facilitate automated testing? How does Python's unittest or pytest framework facilitate automated testing? Jun 19, 2025 am 01:10 AM

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

What are dynamic programming techniques, and how do I use them in Python? What are dynamic programming techniques, and how do I use them in Python? Jun 20, 2025 am 12:57 AM

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

How can you implement custom iterators in Python using __iter__ and __next__? How can you implement custom iterators in Python using __iter__ and __next__? Jun 19, 2025 am 01:12 AM

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

What are the emerging trends or future directions in the Python programming language and its ecosystem? What are the emerging trends or future directions in the Python programming language and its ecosystem? Jun 19, 2025 am 01:09 AM

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

How do I perform network programming in Python using sockets? How do I perform network programming in Python using sockets? Jun 20, 2025 am 12:56 AM

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

How do I slice a list in Python? How do I slice a list in Python? Jun 20, 2025 am 12:51 AM

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not

Polymorphism in python classes Polymorphism in python classes Jul 05, 2025 am 02:58 AM

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

See all articles