


How to Efficiently Fetch the Last Row for Each Group in MySQL Group By Queries?
Nov 14, 2024 pm 06:44 PMOptimizing Last Row Fetching in MySQL Group By Queries
In MySQL, retrieving the last row for each group of a grouped data set requires an efficient approach. One common strategy is the correlated subquery method:
select * from foo as a where a.id = (select max(id) from foo where uid = a.uid group by uid) group by uid;
While this method works, it can be computationally expensive. A more efficient alternative is to use a join with a subquery, as demonstrated in the following query:
SELECT t1.* FROM foo t1 JOIN (SELECT uid, MAX(id) id FROM foo GROUP BY uid) t2 ON t1.id = t2.id AND t1.uid = t2.uid;
This approach optimizes performance by pre-calculating the maximum ID for each group in the subquery. By joining on this pre-calculated value, the query can efficiently retrieve the last row for each group.
Additionally, using EXPLAIN on both queries would provide valuable insights into the execution plan and resource consumption, allowing for further optimization. Another alternative is to use the LEFT JOIN method:
SELECT t1.* FROM foo t1 LEFT JOIN foo t2 ON t1.id < t2.id AND t1.uid = t2.uid WHERE t2.id is NULL;
This query identifies the last row for each group by left joining on subsequent rows and filtering out those with non-null ID values. Ultimately, the choice of optimization approach depends on the specific data and performance requirements of the application.
The above is the detailed content of How to Efficiently Fetch the Last Row for Each Group in MySQL Group By Queries?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

TosecurelyconnecttoaremoteMySQLserver,useSSHtunneling,configureMySQLforremoteaccess,setfirewallrules,andconsiderSSLencryption.First,establishanSSHtunnelwithssh-L3307:localhost:3306user@remote-server-Nandconnectviamysql-h127.0.0.1-P3307.Second,editMyS

MySQL transactions follow ACID characteristics to ensure the reliability and consistency of database transactions. First, atomicity ensures that transactions are executed as an indivisible whole, either all succeed or all fail to roll back. For example, withdrawals and deposits must be completed or not occur at the same time in the transfer operation; second, consistency ensures that transactions transition the database from one valid state to another, and maintains the correct data logic through mechanisms such as constraints and triggers; third, isolation controls the visibility of multiple transactions when concurrent execution, prevents dirty reading, non-repeatable reading and fantasy reading. MySQL supports ReadUncommitted and ReadCommi.

To add MySQL's bin directory to the system PATH, it needs to be configured according to the different operating systems. 1. Windows system: Find the bin folder in the MySQL installation directory (the default path is usually C:\ProgramFiles\MySQL\MySQLServerX.X\bin), right-click "This Computer" → "Properties" → "Advanced System Settings" → "Environment Variables", select Path in "System Variables" and edit it, add the MySQLbin path, save it and restart the command prompt and enter mysql--version verification; 2.macOS and Linux systems: Bash users edit ~/.bashrc or ~/.bash_

MySQL's default transaction isolation level is RepeatableRead, which prevents dirty reads and non-repeatable reads through MVCC and gap locks, and avoids phantom reading in most cases; other major levels include read uncommitted (ReadUncommitted), allowing dirty reads but the fastest performance, 1. Read Committed (ReadCommitted) ensures that the submitted data is read but may encounter non-repeatable reads and phantom readings, 2. RepeatableRead default level ensures that multiple reads within the transaction are consistent, 3. Serialization (Serializable) the highest level, prevents other transactions from modifying data through locks, ensuring data integrity but sacrificing performance;

MySQLWorkbench stores connection information in the system configuration file. The specific path varies according to the operating system: 1. It is located in %APPDATA%\MySQL\Workbench\connections.xml in Windows system; 2. It is located in ~/Library/ApplicationSupport/MySQL/Workbench/connections.xml in macOS system; 3. It is usually located in ~/.mysql/workbench/connections.xml in Linux system or ~/.local/share/data/MySQL/Wor

mysqldump is a common tool for performing logical backups of MySQL databases. It generates SQL files containing CREATE and INSERT statements to rebuild the database. 1. It does not back up the original file, but converts the database structure and content into portable SQL commands; 2. It is suitable for small databases or selective recovery, and is not suitable for fast recovery of TB-level data; 3. Common options include --single-transaction, --databases, --all-databases, --routines, etc.; 4. Use mysql command to import during recovery, and can turn off foreign key checks to improve speed; 5. It is recommended to test backup regularly, use compression, and automatic adjustment.

Aconnectionpoolisacacheofdatabaseconnectionsthatarekeptopenandreusedtoimproveefficiency.Insteadofopeningandclosingconnectionsforeachrequest,theapplicationborrowsaconnectionfromthepool,usesit,andthenreturnsit,reducingoverheadandimprovingperformance.Co

Turn on MySQL slow query logs and analyze locationable performance issues. 1. Edit the configuration file or dynamically set slow_query_log and long_query_time; 2. The log contains key fields such as Query_time, Lock_time, Rows_examined to assist in judging efficiency bottlenecks; 3. Use mysqldumpslow or pt-query-digest tools to efficiently analyze logs; 4. Optimization suggestions include adding indexes, avoiding SELECT*, splitting complex queries, etc. For example, adding an index to user_id can significantly reduce the number of scanned rows and improve query efficiency.
